Synthesizing the Born rule with reinforcement learning
- URL: http://arxiv.org/abs/2404.19011v2
- Date: Mon, 5 Aug 2024 20:23:50 GMT
- Title: Synthesizing the Born rule with reinforcement learning
- Authors: Rodrigo S. Piera, John B. DeBrota, Matthew B. Weiss, Gabriela B. Lemos, Jailson Sales Araújo, Gabriel H. Aguilar, Jacques L. Pienaar,
- Abstract summary: We investigate how a realistic (hence non-ideal) agent might deviate from the Born rule in its decisions.
We quantify how far the algorithm's decision-making behavior departs from the ideal form of the Born rule and investigate the limiting factors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the subjective Bayesian interpretation of quantum theory (QBism), quantum mechanics is a tool that an agent would be wise to use when making bets about natural phenomena. In particular, the Born rule is understood to be a decision-making norm, an ideal which one should strive to meet even if usually falling short in practice. What is required for an agent to make decisions that conform to quantum mechanics? Here we investigate how a realistic (hence non-ideal) agent might deviate from the Born rule in its decisions. To do so we simulate a simple agent as a reinforcement-learning algorithm that makes `bets' on the outputs of a symmetric informationally-complete measurement (SIC) and adjusts its decisions in order to maximize its expected return. We quantify how far the algorithm's decision-making behavior departs from the ideal form of the Born rule and investigate the limiting factors. We propose an experimental implementation of the scenario using heralded single photons.
Related papers
- A refinement of the argument of local realism versus quantum mechanics
by algorithmic randomness [0.0]
In quantum mechanics, the notion of probability plays a crucial role.
In modern mathematics, probability theory means nothing other than measure theory.
We present a refinement of the Born rule, called the principle of typicality, for specifying the property of results of measurements in an operational way.
arXiv Detail & Related papers (2023-12-20T18:22:42Z) - Indefinite order in the interface of quantum mechanics and gravity [0.0]
We discuss the notion of indefinite order, which first appears in an abstract generalization of Quantum Theory.
We present how scenarios involving gravity in low energies could lead to indefinite order.
arXiv Detail & Related papers (2023-10-03T01:16:27Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum mechanics? It's all fun and games until someone loses an $i$ [0.0]
QBism regards quantum mechanics as an addition to probability theory.
Recent work has demonstrated that reference devices employing symmetric informationally complete POVMs (or SICs) achieve a minimal quantumness.
We attempt to identify the optimal reference device in the first real dimension without a SIC.
arXiv Detail & Related papers (2022-06-30T15:15:16Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - About the description of physical reality of Bell's experiment [91.3755431537592]
A hidden variables model complying with the simplest form of Local Realism was recently introduced.
It reproduces Quantum Mechanics' predictions for an even ideally perfect Bell's experiment.
A new type of quantum computer does not exist yet, not even in theory.
arXiv Detail & Related papers (2021-09-06T15:55:13Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Measurement Problem in Quantum Mechanics and the Surjection Hypothesis [0.0]
Quantum measurements have four essential components: the furcation, the witness production, an alignment projection, and the actual choice decision.
The surjection hypothesis explains the actual choice decision.
It is based on a two boundary interpretation applied to the complete quantum universe.
arXiv Detail & Related papers (2021-04-09T17:47:35Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Born's rule as a quantum extension of Bayesian coherence [0.0]
We make a conjectured representation of the Born rule which holds true if symmetric informationally complete POVMs (or SICs) exist for every finite dimensional Hilbert space.
We prove that an agent who thinks they are gambling on the outcomes of measurements on a sufficiently quantum-like system, but refuses to use this form of the Born rule when placing their bets is vulnerable to a Dutch book.
arXiv Detail & Related papers (2020-12-28T18:22:42Z) - Quantum-like modeling of the order effect in decision making: POVM
viewpoint on the Wang-Busemeyer QQ-equality [77.34726150561087]
Wang and Busemeyer invented a quantum model and approach as well as non-parametric equality (so-called QQ-equality)
This note is to test the possibility to expand the Wang-Busemeyer model by considering questions which are mathematically represented by positive operator valued measures.
But, we also showed that, in principle, it is possible to reduce expanded model to the original Wang-Busemeyer model by expanding the context of the questions.
arXiv Detail & Related papers (2018-10-31T18:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.