Improving Interpretability of Deep Active Learning for Flood Inundation Mapping Through Class Ambiguity Indices Using Multi-spectral Satellite Imagery
- URL: http://arxiv.org/abs/2404.19043v1
- Date: Mon, 29 Apr 2024 18:33:17 GMT
- Title: Improving Interpretability of Deep Active Learning for Flood Inundation Mapping Through Class Ambiguity Indices Using Multi-spectral Satellite Imagery
- Authors: Hyunho Lee, Wenwen Li,
- Abstract summary: Flood inundation mapping is a critical task for responding to the increasing risk of flooding linked to global warming.
To cope with the time-consuming and labor-intensive data labeling process in supervised learning, deep active learning strategies are one of the feasible approaches.
We introduce a novel framework of Interpretable Deep Active Learning for Flood inundation Mapping (IDAL-FIM)
- Score: 1.842368798362815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flood inundation mapping is a critical task for responding to the increasing risk of flooding linked to global warming. Significant advancements of deep learning in recent years have triggered its extensive applications, including flood inundation mapping. To cope with the time-consuming and labor-intensive data labeling process in supervised learning, deep active learning strategies are one of the feasible approaches. However, there remains limited exploration into the interpretability of how deep active learning strategies operate, with a specific focus on flood inundation mapping in the field of remote sensing. In this study, we introduce a novel framework of Interpretable Deep Active Learning for Flood inundation Mapping (IDAL-FIM), specifically in terms of class ambiguity of multi-spectral satellite images. In the experiments, we utilize Sen1Floods11 dataset, and adopt U-Net with MC-dropout. In addition, we employ five acquisition functions, which are the random, K-means, BALD, entropy, and margin acquisition functions. Based on the experimental results, we demonstrate that two proposed class ambiguity indices are effective variables to interpret the deep active learning by establishing statistically significant correlation with the predictive uncertainty of the deep learning model at the tile level. Then, we illustrate the behaviors of deep active learning through visualizing two-dimensional density plots and providing interpretations regarding the operation of deep active learning, in flood inundation mapping.
Related papers
- Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
We propose an automatic dataset expansion technique to support semantics-oriented DeepFake detection tasks.
We also resort to joint embedding of face images and their corresponding labels for prediction.
Our method improves the generalizability of DeepFake detection and renders some degree of model interpretation by providing human-understandable explanations.
arXiv Detail & Related papers (2024-08-29T07:11:50Z) - Unsupervised Semantic Segmentation Through Depth-Guided Feature Correlation and Sampling [14.88236554564287]
In this work, we build upon advances in unsupervised learning by incorporating information about the structure of a scene into the training process.
We achieve this by (1) learning depth-feature correlation by spatially correlate the feature maps with the depth maps to induce knowledge about the structure of the scene.
We then implement farthest-point sampling to more effectively select relevant features by utilizing 3D sampling techniques on depth information of the scene.
arXiv Detail & Related papers (2023-09-21T11:47:01Z) - OCTAve: 2D en face Optical Coherence Tomography Angiography Vessel
Segmentation in Weakly-Supervised Learning with Locality Augmentation [14.322349196837209]
We propose the application of the scribble-base weakly-supervised learning method to automate the pixel-level annotation.
The proposed method, called OCTAve, combines the weakly-supervised learning using scribble-annotated ground truth augmented with an adversarial and a novel self-supervised deep supervision.
arXiv Detail & Related papers (2022-07-25T14:40:56Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
We tackle the MTL problem of two dense tasks, ie, semantic segmentation and depth estimation, and present a novel attention module called Cross-Channel Attention Module (CCAM)
In a true symbiotic spirit, we then formulate a novel data augmentation for the semantic segmentation task using predicted depth called AffineMix, and a simple depth augmentation using predicted semantics called ColorAug.
Finally, we validate the performance gain of the proposed method on the Cityscapes dataset, which helps us achieve state-of-the-art results for a semi-supervised joint model based on depth and semantic
arXiv Detail & Related papers (2022-06-21T17:40:55Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
We propose a novel method to improve the self-supervised training of monocular depth via cross-task knowledge distillation.
During training, we utilize a pretrained semantic segmentation teacher network and transfer its semantic knowledge to the depth network.
We extensively evaluate the efficacy of our proposed approach on the KITTI benchmark and compare it with the latest state of the art.
arXiv Detail & Related papers (2021-10-24T19:47:14Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Towards Deep Clustering of Human Activities from Wearables [21.198881633580797]
We develop an unsupervised end-to-end learning strategy for the fundamental problem of human activity recognition from wearables.
We show the effectiveness of our approach to jointly learn unsupervised representations for sensory data and generate cluster assignments with strong semantic correspondence to distinct human activities.
arXiv Detail & Related papers (2020-08-02T13:55:24Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.