Multi-Domain Features Guided Supervised Contrastive Learning for Radar Target Detection
- URL: http://arxiv.org/abs/2412.12620v2
- Date: Thu, 09 Jan 2025 02:00:15 GMT
- Title: Multi-Domain Features Guided Supervised Contrastive Learning for Radar Target Detection
- Authors: Junjie Wang, Yuze Gao, Dongying Li, Wenxian Yu,
- Abstract summary: Existing solutions either model sea clutter for detection or extract target features based on clutter-target echo differences, including statistical and deep features.
We propose a multi-domain features guided supervised contrastive learning (MDFG_SCL) method, which integrates statistical features derived from multi-domain differences with deep features obtained through supervised contrastive learning.
Experiments conducted on real-world datasets demonstrate that the proposed shallow-to-deep detector not only achieves effective identification of small maritime targets but also maintains superior detection performance across varying sea conditions.
- Score: 8.706031869122917
- License:
- Abstract: Detecting small targets in sea clutter is challenging due to dynamic maritime conditions. Existing solutions either model sea clutter for detection or extract target features based on clutter-target echo differences, including statistical and deep features. While more common, the latter often excels in controlled scenarios but struggles with robust detection and generalization in diverse environments, limiting practical use. In this letter, we propose a multi-domain features guided supervised contrastive learning (MDFG_SCL) method, which integrates statistical features derived from multi-domain differences with deep features obtained through supervised contrastive learning, thereby capturing both low-level domain-specific variations and high-level semantic information. This comprehensive feature integration enables the model to effectively distinguish between small targets and sea clutter, even under challenging conditions. Experiments conducted on real-world datasets demonstrate that the proposed shallow-to-deep detector not only achieves effective identification of small maritime targets but also maintains superior detection performance across varying sea conditions, outperforming the mainstream unsupervised contrastive learning and supervised contrastive learning methods.
Related papers
- Nearshore Underwater Target Detection Meets UAV-borne Hyperspectral Remote Sensing: A Novel Hybrid-level Contrastive Learning Framework and Benchmark Dataset [6.832892497880372]
UAV-borne hyperspectral remote sensing has emerged as a promising approach for underwater target detection (UTD)
It is hindered by spectral distortions in nearshore environments, which compromise the accuracy of traditional hyperspectral UTD methods.
We propose a novel framework that integrates contrastive learning with a self-paced learning paradigm for robust HUTD in nearshore regions.
arXiv Detail & Related papers (2025-02-20T12:25:30Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.
It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.
We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
This study introduces a Sparse Differential Directionality prior (SDD) framework.
We leverage the distinct directional characteristics of targets to differentiate them from the background.
We further enhance target detectability with a saliency coherence strategy.
A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model.
arXiv Detail & Related papers (2024-07-22T04:32:43Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7 one-stage detector is subjected to a novel meta-learning training framework.
This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight.
To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors.
arXiv Detail & Related papers (2024-04-29T04:56:52Z) - AMANet: Advancing SAR Ship Detection with Adaptive Multi-Hierarchical
Attention Network [0.5437298646956507]
A novel adaptive multi-hierarchical attention module (AMAM) is proposed to learn multi-scale features and adaptively aggregate salient features from various feature layers.
We first fuse information from adjacent feature layers to enhance the detection of smaller targets, thereby achieving multi-scale feature enhancement.
Thirdly, we present a novel adaptive multi-hierarchical attention network (AMANet) by embedding the AMAM between the backbone network and the feature pyramid network.
arXiv Detail & Related papers (2024-01-24T03:56:33Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z) - Multi-Task Incremental Learning for Object Detection [71.57155077119839]
Multi-task learns multiple tasks, while sharing knowledge and computation among them.
It suffers from catastrophic forgetting of previous knowledge when learned incrementally without access to the old data.
arXiv Detail & Related papers (2020-02-13T04:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.