Continuous feedback protocols for cooling and trapping a quantum harmonic oscillator
- URL: http://arxiv.org/abs/2404.19047v1
- Date: Mon, 29 Apr 2024 18:39:24 GMT
- Title: Continuous feedback protocols for cooling and trapping a quantum harmonic oscillator
- Authors: Guilherme De Sousa, Pharnam Bakhshinezhad, Björn Annby-Andersson, Peter Samuelsson, Patrick P. Potts, Christopher Jarzynski,
- Abstract summary: We investigate cooling schemes using feedback protocols modeled with a Quantum Fokker-Planck Master Equation (QFPME)
This equation describes systems under continuous weak measurements, with feedback based on the outcome of these measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum technologies and experiments often require preparing systems in low-temperature states. Here, we investigate cooling schemes using feedback protocols modeled with a Quantum Fokker-Planck Master Equation (QFPME) recently derived by Annby-Andersson et. al. (Phys. Rev. Lett. 129, 050401, 2022). This equation describes systems under continuous weak measurements, with feedback based on the outcome of these measurements. We apply this formalism to study the cooling and trapping of a harmonic oscillator for several protocols based on position and/or momentum measurements. We find that the protocols can cool the oscillator down to, or close to, the ground state for suitable choices of parameters. Our analysis provides an analytically solvable case study of quantum measurement and feedback and illustrates the application of the QFPME to continuous quantum systems.
Related papers
- Quantum Neural Estimation of Entropies [20.12693323453867]
entropy measures quantify the amount of information and correlation present in a quantum system.
We propose a variational quantum algorithm for estimating the von Neumann and R'enyi entropies, as well as the measured relative entropy and measured R'enyi relative entropy.
arXiv Detail & Related papers (2023-07-03T17:30:09Z) - Error-Mitigated Quantum Simulation of Interacting Fermions with Trapped
Ions [17.707261555353682]
probabilistic error cancellation (PEC) has been proposed as a general and systematic protocol.
PEC has been tested in two-qubit systems and a superconducting multi-qubit system.
We benchmark PEC using up to four trapped-ion qubits.
arXiv Detail & Related papers (2023-02-21T04:27:30Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Cooling through parametric modulations and phase-preserving quantum
measurements [0.0]
Protocol is robust against moderate amounts of dissipation and phase errors in the feedback loop.
Our work has implications for the cooling of mechanical resonators and the integration of quantum refrigerators into quantum circuits.
arXiv Detail & Related papers (2022-04-01T14:34:07Z) - Characterization and Verification of Trotterized Digital Quantum
Simulation via Hamiltonian and Liouvillian Learning [0.0]
We propose Floquet Hamiltonian learning to reconstruct the experimentally realized Floquet Hamiltonian order-by-order.
We show that our protocol provides the basis for feedback-loop design and calibration of new types of quantum gates.
arXiv Detail & Related papers (2022-03-29T18:29:01Z) - Estimating the degree of non-Markovianity using variational quantum
circuits [0.0]
We propose to use a qubit as a probe to estimate the degree of non-Markovianity of the environment.
We find an optimal sequence of qubit-environment interactions that yield accurate estimations.
arXiv Detail & Related papers (2022-02-28T17:14:46Z) - Improving Short-Term Stability in Optical Lattice Clocks by Quantum
Nondemolition Measurements [0.0]
We propose a multimeasurement estimation protocol for Quantum Nondemolition (QND) measurements in a Rabi clock interferometer.
The protocol exploits the correlations between multiple non-destructive measurements of the initially prepared coherent spin state.
arXiv Detail & Related papers (2021-09-17T09:09:23Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.