論文の概要: Blind Spots and Biases: Exploring the Role of Annotator Cognitive Biases in NLP
- arxiv url: http://arxiv.org/abs/2404.19071v1
- Date: Mon, 29 Apr 2024 19:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:00:28.601749
- Title: Blind Spots and Biases: Exploring the Role of Annotator Cognitive Biases in NLP
- Title(参考訳): Blind Spots and Biases: Annotator Cognitive Biases の役割を探る
- Authors: Sanjana Gautam, Mukund Srinath,
- Abstract要約: 既存のバイアスや社会的格差を悪化させる可能性への懸念が高まっている。
この問題は学界、政策立案者、産業、市民社会から広く注目を集めた。
本研究は,既存の方法論の見直しと,バイアスに寄与するアノテーション属性の理解をめざして実施中の調査に焦点をあてる。
- 参考スコア(独自算出の注目度): 3.9287497907611875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid proliferation of artificial intelligence, there is growing concern over its potential to exacerbate existing biases and societal disparities and introduce novel ones. This issue has prompted widespread attention from academia, policymakers, industry, and civil society. While evidence suggests that integrating human perspectives can mitigate bias-related issues in AI systems, it also introduces challenges associated with cognitive biases inherent in human decision-making. Our research focuses on reviewing existing methodologies and ongoing investigations aimed at understanding annotation attributes that contribute to bias.
- Abstract(参考訳): 人工知能の急速な普及に伴い、既存のバイアスや社会的格差を悪化させ、新しいものを導入する可能性への懸念が高まっている。
この問題は学界、政策立案者、産業、市民社会から広く注目を集めた。
人間の視点を統合することでAIシステムにおけるバイアスに関連する問題を軽減できるというエビデンスがある一方で、人間の意思決定に固有の認知バイアスに関連する課題も導入されている。
本研究は,既存の方法論の見直しと,バイアスに寄与するアノテーション属性の理解を目的とした継続的な調査に焦点をあてる。
関連論文リスト
- Biased AI can Influence Political Decision-Making [64.9461133083473]
本稿では、AI言語モデルにおけるパルチザンバイアスが政治的意思決定に及ぼす影響について検討する。
政治的に偏見のあるモデルに晒された参加者は、意見を採用し、AIの偏見と一致した決定を下す可能性が著しく高いことがわかった。
論文 参考訳(メタデータ) (2024-10-08T22:56:00Z) - A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning [70.16523526957162]
常識の因果関係を理解することは、人々が現実世界の原理をよりよく理解するのに役立ちます。
その重要性にもかかわらず、このトピックの体系的な探索は特に欠落している。
本研究の目的は、体系的な概要の提供、最近の進歩に関する学者の更新、初心者のための実践的なガイドを提供することである。
論文 参考訳(メタデータ) (2024-06-27T16:30:50Z) - Interdisciplinary Expertise to Advance Equitable Explainable AI [3.4195896673488395]
本稿では、説明可能なAI(XAI)に焦点を当て、学際的専門家パネルレビューのためのフレームワークについて述べる。
我々は、より正確で公平な解釈を生み出すための学際専門家パネルの重要性を強調した。
論文 参考訳(メタデータ) (2024-05-29T17:45:38Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Unmasking Nationality Bias: A Study of Human Perception of Nationalities
in AI-Generated Articles [10.8637226966191]
自然言語処理(NLP)モデルにおける国籍バイアスの可能性について,人間の評価手法を用いて検討した。
本研究は、テキスト生成モデルにおける国籍バイアスの影響を識別し、理解するために、2段階の混合手法を用いている。
以上の結果から,NLPモデルでは既存の社会的バイアスを再現・増幅する傾向があり,社会工学的な場面で使用すれば害につながる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-08T15:46:27Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
この調査論文は、AIの公平性とバイアスに関する簡潔で包括的な概要を提供する。
我々は、データ、アルゴリズム、人間の決定バイアスなどのバイアス源をレビューする。
偏りのあるAIシステムの社会的影響を評価し,不平等の持続性と有害なステレオタイプの強化に着目した。
論文 参考訳(メタデータ) (2023-04-16T03:23:55Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Data, Power and Bias in Artificial Intelligence [5.124256074746721]
人工知能は社会的偏見を悪化させ、平等な権利と市民の自由における数十年の進歩を取り戻せる可能性がある。
機械学習アルゴリズムの訓練に使用されるデータは、社会で学び、永続する可能性のある社会的不正、不平等、差別的な態度を捉えることができる。
本稿では、異なるドメインからのAIシステムにおけるデータの公正性、公平性、バイアス軽減を保証するための継続的な作業についてレビューする。
論文 参考訳(メタデータ) (2020-07-28T16:17:40Z) - Bias in Data-driven AI Systems -- An Introductory Survey [37.34717604783343]
この調査は、(大きな)データと強力な機械学習(ML)アルゴリズムによって、AIの大部分は、データ駆動型AIに重点を置いている。
さもなければ、一般的な用語バイアスを使ってデータの収集や処理に関連する問題を説明します。
論文 参考訳(メタデータ) (2020-01-14T09:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。