Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data
- URL: http://arxiv.org/abs/2404.19073v1
- Date: Mon, 29 Apr 2024 19:32:50 GMT
- Title: Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data
- Authors: Jitendra K Tugnait,
- Abstract summary: We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix- Gaussian time series.
We consider a sparse-based formulation of the problem with a Kronecker-decomposable power spectral density (PSD)
We illustrate our approach using numerical examples utilizing both synthetic and real data.
- Score: 12.94486861344922
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix-variate Gaussian time series. All past work on high-dimensional matrix graphical models assumes that independent and identically distributed (i.i.d.) observations of the matrix-variate are available. Here we allow dependent observations. We consider a sparse-group lasso-based frequency-domain formulation of the problem with a Kronecker-decomposable power spectral density (PSD), and solve it via an alternating direction method of multipliers (ADMM) approach. The problem is bi-convex which is solved via flip-flop optimization. We provide sufficient conditions for local convergence in the Frobenius norm of the inverse PSD estimators to the true value. This result also yields a rate of convergence. We illustrate our approach using numerical examples utilizing both synthetic and real data.
Related papers
- A Copula Graphical Model for Multi-Attribute Data using Optimal Transport [9.817170209575346]
We introduce a novel semiparametric multi-attribute graphical model based on a new copula named Cyclically Monotone Copula.
For the setting with high-dimensional attributes, a Projected Cyclically Monotone Copula model is proposed to address the curse of dimensionality issue.
arXiv Detail & Related papers (2024-04-10T04:49:00Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - Stochastic Parallelizable Eigengap Dilation for Large Graph Clustering [12.544602297450533]
We aim to identify clusters of nodes where most edges fall within clusters and only few edges fall between clusters.
A core step of spectral clustering is performing an eigendecomposition of the corresponding graph Laplacian matrix.
This paper introduces a parallelizable approach to dilating the spectrum in order to accelerate SVD solvers and in turn, spectral clustering.
arXiv Detail & Related papers (2022-07-29T10:13:07Z) - Sparse-Group Log-Sum Penalized Graphical Model Learning For Time Series [12.843340232167266]
We consider the problem of inferring the conditional independence graph (CIG) of a stationary multivariate Gaussian time series.
A sparse-group lasso based frequency-domain formulation of the problem has been considered in the literature.
We illustrate our approach utilizing both synthetic and real data.
arXiv Detail & Related papers (2022-04-29T00:06:41Z) - Hybrid Model-based / Data-driven Graph Transform for Image Coding [54.31406300524195]
We present a hybrid model-based / data-driven approach to encode an intra-prediction residual block.
The first $K$ eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST) for stability.
Using WebP as a baseline image, experimental results show that our hybrid graph transform achieved better energy compaction than default discrete cosine transform (DCT) and better stability than KLT.
arXiv Detail & Related papers (2022-03-02T15:36:44Z) - On Sparse High-Dimensional Graphical Model Learning For Dependent Time Series [12.94486861344922]
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional stationary time series.
A sparse-group lasso-based frequency-domain formulation of the problem is presented.
We also empirically investigate selection of the tuning parameters based on Bayesian information criterion.
arXiv Detail & Related papers (2021-11-15T16:52:02Z) - Near optimal sample complexity for matrix and tensor normal models via
geodesic convexity [5.191641077435773]
We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics.
In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability.
arXiv Detail & Related papers (2021-10-14T17:47:00Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.