A Copula Graphical Model for Multi-Attribute Data using Optimal Transport
- URL: http://arxiv.org/abs/2404.06735v1
- Date: Wed, 10 Apr 2024 04:49:00 GMT
- Title: A Copula Graphical Model for Multi-Attribute Data using Optimal Transport
- Authors: Qi Zhang, Bing Li, Lingzhou Xue,
- Abstract summary: We introduce a novel semiparametric multi-attribute graphical model based on a new copula named Cyclically Monotone Copula.
For the setting with high-dimensional attributes, a Projected Cyclically Monotone Copula model is proposed to address the curse of dimensionality issue.
- Score: 9.817170209575346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by modern data forms such as images and multi-view data, the multi-attribute graphical model aims to explore the conditional independence structure among vectors. Under the Gaussian assumption, the conditional independence between vectors is characterized by blockwise zeros in the precision matrix. To relax the restrictive Gaussian assumption, in this paper, we introduce a novel semiparametric multi-attribute graphical model based on a new copula named Cyclically Monotone Copula. This new copula treats the distribution of the node vectors as multivariate marginals and transforms them into Gaussian distributions based on the optimal transport theory. Since the model allows the node vectors to have arbitrary continuous distributions, it is more flexible than the classical Gaussian copula method that performs coordinatewise Gaussianization. We establish the concentration inequalities of the estimated covariance matrices and provide sufficient conditions for selection consistency of the group graphical lasso estimator. For the setting with high-dimensional attributes, a {Projected Cyclically Monotone Copula} model is proposed to address the curse of dimensionality issue that arises from solving high-dimensional optimal transport problems. Numerical results based on synthetic and real data show the efficiency and flexibility of our methods.
Related papers
- Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data [12.94486861344922]
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix- Gaussian time series.
We consider a sparse-based formulation of the problem with a Kronecker-decomposable power spectral density (PSD)
We illustrate our approach using numerical examples utilizing both synthetic and real data.
arXiv Detail & Related papers (2024-04-29T19:32:50Z) - On Sufficient Graphical Models [4.279157560953137]
We introduce a sufficient graphical model by applying the recently developed nonlinear sufficient dimension reduction techniques.
We develop the population-level properties, convergence rate, and variable selection consistency of our estimate.
arXiv Detail & Related papers (2023-07-10T05:30:14Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - Near optimal sample complexity for matrix and tensor normal models via
geodesic convexity [5.191641077435773]
We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics.
In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability.
arXiv Detail & Related papers (2021-10-14T17:47:00Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Estimation of sparse Gaussian graphical models with hidden clustering
structure [8.258451067861932]
We propose a model to estimate the sparse Gaussian graphical models with hidden clustering structure.
We develop a symmetric Gauss-Seidel based alternating direction method of the multipliers.
Numerical experiments on both synthetic data and real data demonstrate the good performance of our model.
arXiv Detail & Related papers (2020-04-17T08:43:31Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.