論文の概要: Deep Reinforcement Learning for Advanced Longitudinal Control and Collision Avoidance in High-Risk Driving Scenarios
- arxiv url: http://arxiv.org/abs/2404.19087v1
- Date: Mon, 29 Apr 2024 19:58:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:00:28.523985
- Title: Deep Reinforcement Learning for Advanced Longitudinal Control and Collision Avoidance in High-Risk Driving Scenarios
- Title(参考訳): 高リスク運転シナリオにおける高度縦方向制御と衝突回避のための深部強化学習
- Authors: Dianwei Chen, Yaobang Gong, Xianfeng Yang,
- Abstract要約: 本研究では, 縦方向制御と衝突回避のための深部強化学習に基づく新しいアルゴリズムを提案する。
シミュレーションされた高リスクシナリオにおけるその実装は、従来のシステムが通常失敗する密集した交通で緊急ブレーキを伴い、衝突の可能性のある衝突を防ぐアルゴリズム能力を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Advanced Driver Assistance Systems primarily focus on the vehicle directly ahead, often overlooking potential risks from following vehicles. This oversight can lead to ineffective handling of high risk situations, such as high speed, closely spaced, multi vehicle scenarios where emergency braking by one vehicle might trigger a pile up collision. To overcome these limitations, this study introduces a novel deep reinforcement learning based algorithm for longitudinal control and collision avoidance. This proposed algorithm effectively considers the behavior of both leading and following vehicles. Its implementation in simulated high risk scenarios, which involve emergency braking in dense traffic where traditional systems typically fail, has demonstrated the algorithm ability to prevent potential pile up collisions, including those involving heavy duty vehicles.
- Abstract(参考訳): 既存のAdvanced Driver Assistance Systems(アドバンスト・ドライバー・アシスト・システムズ)は、主に後続車による潜在的なリスクを見越して、車両を直接に焦点を絞っている。
この監視は、1台の車両による緊急ブレーキが衝突を引き起こす可能性のある、高速、密集した複数の車両シナリオのような、リスクの高い状況の非効率な処理につながる可能性がある。
これらの制約を克服するために, 縦方向制御と衝突回避のための深層強化学習に基づくアルゴリズムを提案する。
提案アルゴリズムは、先行車両と後続車両の両方の挙動を効果的に検討する。
シミュレーションされた高リスクシナリオの実装は、従来のシステムが通常失敗する密集した交通で緊急ブレーキを伴い、重用車を含む衝突を防止できるアルゴリズム能力を示している。
関連論文リスト
- CRASH: Challenging Reinforcement-Learning Based Adversarial Scenarios For Safety Hardening [16.305837225117607]
本稿では, CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardeningを紹介する。
第1のCRASHは、Ego車両との衝突を自動的に誘導するために、AVシミュレータ内のNon Player Character(NPC)エージェントを制御することができる。
我々はまた、敵エージェントに対する改善シナリオをシミュレートすることで、運動プランナーを反復的に洗練する安全硬化という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-26T00:00:27Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - On using Machine Learning Algorithms for Motorcycle Collision Detection [0.0]
衝突シミュレーションにより,エアバッグやシートベルトなどの受動的安全対策を装備すれば,車両衝突時の重傷や死亡のリスクを大幅に低減できることが示された。
本稿では,衝突を確実に検出する上での課題として,機械学習アルゴリズムの適用性について検討する。
論文 参考訳(メタデータ) (2024-03-14T15:32:25Z) - Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning [12.014977175887767]
本研究では,周囲の車両の重量を考慮し,リスク予測に基づく自律運転戦略を開発する。
リスクフィールド理論に基づいて、周囲の車両重量を統合するリスクインジケータを提案し、自律運転決定に組み込んだ。
衝突時の潜在的な衝突エネルギーを示す指標を新たに提案し, AV駆動方式の性能評価を行った。
論文 参考訳(メタデータ) (2023-12-27T06:03:34Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
学習可能なナビゲーションポリシとして,セーフとアンセーフの2つを比較します。
安全なポリシは、制約をアカウントに含めますが、もう一方はそうではありません。
安全政策は、よりクリアランスの高い軌道を生成することができ(障害物によらず)、全体的な性能を犠牲にすることなく、トレーニング中に衝突を減らすことができることを示す。
論文 参考訳(メタデータ) (2023-07-27T01:04:57Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
フェールネットは、規模が拡大したミニ都市において、名目上と無謀なドライバーの両方の軌道上で、エンドツーエンドでトレーニングされた、繰り返しニューラルネットワークである。
制御障害、上流での認識エラー、ドライバーのスピードを正確に識別し、名目運転と区別することができる。
速度や周波数ベースの予測器と比較すると、FailureNetのリカレントニューラルネットワーク構造は予測能力を向上し、ハードウェアにデプロイすると84%以上の精度が得られる。
論文 参考訳(メタデータ) (2023-03-21T22:55:51Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - A novel method of predictive collision risk area estimation for
proactive pedestrian accident prevention system in urban surveillance
infrastructure [6.777019450570473]
道路交通事故は、人間の生活に深刻な脅威をもたらし、早期死亡の主な原因となっています。
歩行者の衝突を予防するためのブレークスルーは、CCTVなどの視覚センサに基づいて歩行者の潜在的なリスクを認識することです。
本研究では,無信号横断歩道における衝突リスク領域推定システムを提案する。
論文 参考訳(メタデータ) (2021-05-06T10:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。