論文の概要: Source-Free Domain Adaptation of Weakly-Supervised Object Localization Models for Histology
- arxiv url: http://arxiv.org/abs/2404.19113v2
- Date: Sun, 12 May 2024 22:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 21:13:38.994224
- Title: Source-Free Domain Adaptation of Weakly-Supervised Object Localization Models for Histology
- Title(参考訳): 組織学における弱スーパービジョン対象定位モデルのソースフリー領域適応
- Authors: Alexis Guichemerre, Soufiane Belharbi, Tsiry Mayet, Shakeeb Murtaza, Pourya Shamsolmoali, Luke McCaffrey, Eric Granger,
- Abstract要約: 癌度に応じて組織像を分類するために、WSOL(Deep weakly supervised Object Localization)モデルを訓練することができる。
ラベル付きソースイメージデータに基づいてトレーニングされたWSOLモデルは、ラベルなしターゲットデータを使用して適用することができる。
本稿では,ソースフリー(教師なし)ドメイン適応(SFDA)に着目し,事前学習したソースモデルを新たなターゲットドメインに適応させるという課題について述べる。
- 参考スコア(独自算出の注目度): 8.984366988153116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the emergence of deep learning, digital pathology has gained popularity for cancer diagnosis based on histology images. Deep weakly supervised object localization (WSOL) models can be trained to classify histology images according to cancer grade and identify regions of interest (ROIs) for interpretation, using inexpensive global image-class annotations. A WSOL model initially trained on some labeled source image data can be adapted using unlabeled target data in cases of significant domain shifts caused by variations in staining, scanners, and cancer type. In this paper, we focus on source-free (unsupervised) domain adaptation (SFDA), a challenging problem where a pre-trained source model is adapted to a new target domain without using any source domain data for privacy and efficiency reasons. SFDA of WSOL models raises several challenges in histology, most notably because they are not intended to adapt for both classification and localization tasks. In this paper, 4 state-of-the-art SFDA methods, each one representative of a main SFDA family, are compared for WSOL in terms of classification and localization accuracy. They are the SFDA-Distribution Estimation, Source HypOthesis Transfer, Cross-Domain Contrastive Learning, and Adaptively Domain Statistics Alignment. Experimental results on the challenging Glas (smaller, breast cancer) and Camelyon16 (larger, colon cancer) histology datasets indicate that these SFDA methods typically perform poorly for localization after adaptation when optimized for classification.
- Abstract(参考訳): 深層学習の出現に伴い, 組織像に基づく癌診断において, デジタル病理学が注目されている。
ディープ弱教師付きオブジェクトローカライゼーション(WSOL)モデルは、安価なグローバルな画像クラスアノテーションを使用して、がんのグレードに応じて組織像を分類し、解釈のための関心領域(ROI)を特定するために訓練することができる。
当初、ラベル付きソース画像データに基づいてトレーニングされたWSOLモデルは、染色、スキャナー、癌タイプの変化によって生じる大きなドメインシフトの場合に、ラベルなしのターゲットデータを使用して適応することができる。
本稿では、プライバシと効率の理由から、ソースドメインデータを一切使用せずに、事前学習したソースモデルを新しいターゲットドメインに適合させるという難題である、ソースフリー(教師なし)ドメイン適応(SFDA)に焦点を当てる。
WSOLモデルのSFDAは、分類タスクとローカライゼーションタスクの両方に適応することを意図していないため、組織学におけるいくつかの課題を提起している。
本報告では, 主要SFDAファミリーの代表者である4つの最先端SFDA法について, 分類と位置推定の精度でWSOLと比較した。
SFDA-Distribution Estimation, Source HypOthesis Transfer, Cross-Domain Contrastive Learning, Adaptively Domain Statistics Alignmentである。
Glas (小, 乳癌) とCamelyon16 (大, 大腸癌) の組織学的データセットの実験結果から, これらのSFDA法は, 分類に最適化された場合, 適応後の局所化にはあまり役に立たないことが示唆された。
関連論文リスト
- Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
医用画像セグメンテーションのための2段階のソースフリードメイン適応(SFDA)フレームワークを提案する。
プロトタイプアンコールされた特徴アライメントの段階では,まず,事前学習した画素ワイド分類器の重みを原プロトタイプとして利用する。
そこで,本研究では,目標となる特徴とクラスプロトタイプとの整合性を期待するコストを最小化し,双方向輸送を導入する。
論文 参考訳(メタデータ) (2023-07-19T06:07:12Z) - ProSFDA: Prompt Learning based Source-free Domain Adaptation for Medical
Image Segmentation [21.079667938055668]
医用画像分割のためのtextbfProSFDA (textbfProSFDA) 法を提案する。
以上の結果から,提案したProSFDA法は,他のSFDA法よりも優れており,UDA法と同等であることが明らかとなった。
論文 参考訳(メタデータ) (2022-11-21T14:57:04Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
本稿では,グラフニューラルネットワークを用いた教師なし領域適応手法を提案する。
分布シフトを伴う2つの挑戦的医用画像データセットの分類法について検討した。
実験により,本手法は他の領域適応法と比較して最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2022-06-27T09:02:16Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
ソースフリー領域適応画像分割のための2段階のアプローチを提案する。
我々は,高エントロピー領域を抑えつつ,ターゲット固有の擬似ラベルを生成することに注力する。
第2段階では、タスク固有の表現にネットワークを適用することに重点を置いている。
論文 参考訳(メタデータ) (2022-03-29T17:50:22Z) - Self-Rule to Adapt: Generalized Multi-source Feature Learning Using
Unsupervised Domain Adaptation for Colorectal Cancer Tissue Detection [9.074125289002911]
教師付き学習はラベル付きデータの可用性によって制限される。
本稿では、自己教師付き学習を利用してドメイン適応を行うSRAを提案する。
論文 参考訳(メタデータ) (2021-08-20T13:52:33Z) - Self-Adaptive Transfer Learning for Multicenter Glaucoma Classification
in Fundus Retina Images [9.826586293806837]
マルチセンタデータセット間のドメインギャップを埋めるための自己適応型トランスファーラーニング(SATL)戦略を提案する。
具体的には、ソースドメイン上で事前訓練されたDLモデルのエンコーダを使用して、再構成モデルのエンコーダを初期化する。
以上の結果から,SATL法はプライベートおよび2つの公共緑内障診断データセット間の領域適応作業に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-05-07T05:20:37Z) - Domain adaptation based self-correction model for COVID-19 infection
segmentation in CT images [23.496487874821756]
CT画像を用いた新型コロナウイルス感染セグメント化のためのドメイン適応型自己補正モデル(DASC-Net)を提案する。
DASC-Netは、ドメインシフトを解決するための新しい注目と機能ドメイン拡張ドメイン適応モデル(AFD-DA)と、結果を洗練するための自己補正学習プロセスから構成される。
3つの公開可能なCOVID-19 CTデータセットに対する大規模な実験は、DASC-Netが最先端のセグメンテーション、ドメインシフト、および新型コロナウイルス感染セグメンテーションメソッドを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2021-04-20T00:45:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。