論文の概要: XFeat: Accelerated Features for Lightweight Image Matching
- arxiv url: http://arxiv.org/abs/2404.19174v1
- Date: Tue, 30 Apr 2024 00:37:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:53:21.643323
- Title: XFeat: Accelerated Features for Lightweight Image Matching
- Title(参考訳): XFeat: 軽量画像マッチングのためのアクセラレーション機能
- Authors: Guilherme Potje, Felipe Cadar, Andre Araujo, Renato Martins, Erickson R. Nascimento,
- Abstract要約: 資源効率のよい視覚対応のための軽量で正確なアーキテクチャを提案する。
我々の手法はXFeat(Accelerated Features)と呼ばれ、畳み込みニューラルネットワークの基本設計選択を再考する。
特別なハードウェア最適化をせずに、安価なラップトップCPU上でリアルタイムに動作します。
- 参考スコア(独自算出の注目度): 7.017955781474835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a lightweight and accurate architecture for resource-efficient visual correspondence. Our method, dubbed XFeat (Accelerated Features), revisits fundamental design choices in convolutional neural networks for detecting, extracting, and matching local features. Our new model satisfies a critical need for fast and robust algorithms suitable to resource-limited devices. In particular, accurate image matching requires sufficiently large image resolutions - for this reason, we keep the resolution as large as possible while limiting the number of channels in the network. Besides, our model is designed to offer the choice of matching at the sparse or semi-dense levels, each of which may be more suitable for different downstream applications, such as visual navigation and augmented reality. Our model is the first to offer semi-dense matching efficiently, leveraging a novel match refinement module that relies on coarse local descriptors. XFeat is versatile and hardware-independent, surpassing current deep learning-based local features in speed (up to 5x faster) with comparable or better accuracy, proven in pose estimation and visual localization. We showcase it running in real-time on an inexpensive laptop CPU without specialized hardware optimizations. Code and weights are available at www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24.
- Abstract(参考訳): 資源効率のよい視覚対応のための軽量で正確なアーキテクチャを提案する。
我々の手法はXFeat(Accelerated Features)と呼ばれ、局所特徴の検出、抽出、マッチングのための畳み込みニューラルネットワークの基本設計選択を再考する。
我々の新しいモデルは、リソース制限されたデバイスに適した高速で堅牢なアルゴリズムに対する重要なニーズを満たす。
特に、正確な画像マッチングには十分な画像解像度が必要であり、そのため、ネットワーク内のチャネル数を制限しながら、解像度を可能な限り大きく保ちます。
さらに、我々のモデルはスパースレベルやセミセンスレベルのマッチングを選択できるように設計されており、それぞれがビジュアルナビゲーションや拡張現実など、さまざまな下流アプリケーションに適している可能性がある。
我々のモデルは、粗い局所記述子に依存した新しいマッチングリファインメントモジュールを利用して、半深度マッチングを効率的に提供する最初のモデルである。
XFeatは汎用的でハードウェアに依存しない、現在のディープラーニングベースのローカル機能(最大5倍高速)を上回り、ポーズ推定と視覚的ローカライゼーションで証明されている。
特別なハードウェア最適化をせずに、安価なラップトップCPU上でリアルタイムに動作することを示す。
コードとウェイトはwww.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24で入手できる。
関連論文リスト
- 1M parameters are enough? A lightweight CNN-based model for medical
image segmentation [0.4129225533930966]
軽量なU-Netベースのモデルを模索しており、同じ状態を維持したり、より優れたパフォーマンス、すなわちU-Liteを実現できます。
我々は,CNNの強みを生かし,演算パラメータの著しい削減を図るために,Depthwise Separable Convolutionの原理に基づいてU-Liteを設計する。
全体として、U-Lite は 878K のパラメータしか持たず、従来の U-Net の35倍も小さく、現代の Transformer ベースのモデルよりもはるかに少ない。
論文 参考訳(メタデータ) (2023-06-28T11:17:37Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
我々は,ネットワーク量子化技術を用いて推論を高速化し,計算限定プラットフォームでの利用を可能にする。
バイナリディスクリプタを用いた効率的な量子化ネットワークZippyPointは,ネットワーク実行速度,ディスクリプタマッチング速度,3Dモデルサイズを改善する。
これらの改善は、ホモグラフィー推定、視覚的ローカライゼーション、マップフリーな視覚的再ローカライゼーションのタスクで評価されるように、小さなパフォーマンス劣化をもたらす。
論文 参考訳(メタデータ) (2022-03-07T18:59:03Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Searching for Two-Stream Models in Multivariate Space for Video
Recognition [80.25356538056839]
本稿では,巨大空間における2ストリーム映像モデルを効率的に検索できる実用的ニューラルアーキテクチャ探索手法を提案する。
設計空間において,性能が著しく向上した2ストリームモデルを自動的に発見できることを実証する。
論文 参考訳(メタデータ) (2021-08-30T02:03:28Z) - Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in
Image Classification [46.885260723836865]
ディープ畳み込みニューラルネットワーク (Deep Convolutional Neural Network, CNN) は、高解像度画像で処理することで一般的に改善される。
画像中のすべての領域がタスク関連であるとは限らないという事実に着想を得て,効率的な画像分類を行う新しいフレームワークを提案する。
我々のフレームワークは、最先端の軽量CNNの多くと互換性があり、汎用的で柔軟です。
論文 参考訳(メタデータ) (2020-10-11T17:55:06Z) - FastSal: a Computationally Efficient Network for Visual Saliency
Prediction [7.742198347952173]
我々は、MobileNetV2が視覚的サリエンシモデルに優れたバックボーンを作り、複雑なデコーダを使わずに有効であることを示す。
また,DeepGaze IIのような計算コストの高いモデルからの知識伝達は,ラベルのないデータセットを擬似ラベリングすることで実現できることを示す。
論文 参考訳(メタデータ) (2020-08-25T16:32:33Z) - Performance Aware Convolutional Neural Network Channel Pruning for
Embedded GPUs [6.035819238203187]
コンボリューションチャネルの数を減少させ,初期サイズの12%を刈り取ることで,性能を損なう場合がある。
また,cuDNNで3倍,Arm Compute LibraryとTVMで10倍以上の性能向上を実現した。
論文 参考訳(メタデータ) (2020-02-20T12:07:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。