Optimal quantum strategy for locating Unruh channels
- URL: http://arxiv.org/abs/2404.19216v1
- Date: Tue, 30 Apr 2024 02:33:37 GMT
- Title: Optimal quantum strategy for locating Unruh channels
- Authors: Qianqian Liu, Tonghua Liu, Cuihong Wen, Jieci Wang,
- Abstract summary: We employ the tools of channel-position finding to locate Unruh channels.
The signal-idler and idler-free protocols are explored to determine the position of the target Unruh channel.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From the perspective of quantum information theory, the effect of Unruh radiation on a two-level accelerated detector can be modeled as a quantum channel. In this work, we employ the tools of channel-position finding to locate Unruh channels. The signal-idler and idler-free protocols are explored to determine the position of the target Unruh channel within a sequence of background channels. We derive the fidelity-based bounds for the ultimate error probability of each strategy and obtain the conditions where the signal-idler protocol is superior to the protocol involving idler-free states. It is found that the lower bound of the error probability for the signal-idler scheme exhibits clear advantages in all cases, while the idler-free scheme can only be implemented when the temperature of the two channels is very close and the number of initial states is insufficient. Interestingly, it is shown that the optimal detection protocol relies on the residual correlations shared between the emitted probe state and the retained idler modes.
Related papers
- Protecting Classical-Quantum Signals in Free Space Optical Channels [0.0]
This work presents an error correction protocol capable of protecting a signal passing through such channels by encoding it with an ancillary entangled bipartite state.
We show how, relative to non-encoded direct transmission, the protocol can improve the fidelity of transmitted coherent states over a wide range of losses and erasure probabilities.
We briefly discuss the application of our protocol to the transmission of more complex input states, such as multi-mode entangled states.
arXiv Detail & Related papers (2023-03-12T23:18:18Z) - Joint eavesdropping on the BB84 decoy state protocol with an arbitrary
passive light-source side channel [0.0]
We show how to account for the joint eavesdropping on both operational degree of freedom and the passive side channel of the generic form.
We develop an effective error method and show its applicability to the BB84 decoy-state protocol.
arXiv Detail & Related papers (2022-11-24T15:34:57Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Analytical Bounds for Dynamic Multi-Channel Discrimination [0.0]
Optimal discrimination protocols often rely on entanglement shared between an incident probe and a protected idler-mode.
In this work, we investigate idler-free block protocols based on the use of multipartite entangled probe states.
We derive new, analytical bounds for the average error probability of such protocols in a bosonic Gaussian channel setting.
arXiv Detail & Related papers (2021-01-26T10:39:26Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Bounds on amplitude damping channel discrimination [0.0]
adaptivity has been shown to improve the performance of discrimination protocols.
We present a tighter lower bound on the achievable trace norm between protocol outputs.
The upper and lower bounds are compared with existing bounds and then applied to quantum hacking and biological quantum sensing scenarios.
arXiv Detail & Related papers (2020-09-10T11:35:47Z) - Ultimate limits for multiple quantum channel discrimination [0.966840768820136]
This paper studies the problem of hypothesis testing with quantum channels.
We establish a lower limit for the ultimate error probability affecting the discrimination of an arbitrary number of quantum channels.
We also show that this lower bound is achievable when the channels have certain symmetries.
arXiv Detail & Related papers (2020-07-29T03:08:48Z) - Optimally Displaced Threshold Detection for Discriminating Binary
Coherent States Using Imperfect Devices [50.09039506170243]
We analytically study the performance of the generalized Kennedy receiver having optimally displaced threshold detection (ODTD) in a realistic situation with noises and imperfect devices.
We show that the proposed greedy search algorithm can obtain a lower and smoother error probability than the existing works.
arXiv Detail & Related papers (2020-07-21T21:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.