Regression for matrix-valued data via Kronecker products factorization
- URL: http://arxiv.org/abs/2404.19220v1
- Date: Tue, 30 Apr 2024 02:44:41 GMT
- Title: Regression for matrix-valued data via Kronecker products factorization
- Authors: Yin-Jen Chen, Minh Tang,
- Abstract summary: We propose an estimation algorithm, termed KRO-PRO-FAC, for estimating the parameters $beta_1k subset Rep times q_1$ and $beta_2k subset Rep times q$.
Numerical studies on simulated and real data indicate that our procedure is competitive, in terms of both estimation error and predictive accuracy, compared to other existing methods.
- Score: 0.5156484100374059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the matrix-variate regression problem $Y_i = \sum_{k} \beta_{1k} X_i \beta_{2k}^{\top} + E_i$ for $i=1,2\dots,n$ in the high dimensional regime wherein the response $Y_i$ are matrices whose dimensions $p_{1}\times p_{2}$ outgrow both the sample size $n$ and the dimensions $q_{1}\times q_{2}$ of the predictor variables $X_i$ i.e., $q_{1},q_{2} \ll n \ll p_{1},p_{2}$. We propose an estimation algorithm, termed KRO-PRO-FAC, for estimating the parameters $\{\beta_{1k}\} \subset \Re^{p_1 \times q_1}$ and $\{\beta_{2k}\} \subset \Re^{p_2 \times q_2}$ that utilizes the Kronecker product factorization and rearrangement operations from Van Loan and Pitsianis (1993). The KRO-PRO-FAC algorithm is computationally efficient as it does not require estimating the covariance between the entries of the $\{Y_i\}$. We establish perturbation bounds between $\hat{\beta}_{1k} -\beta_{1k}$ and $\hat{\beta}_{2k} - \beta_{2k}$ in spectral norm for the setting where either the rows of $E_i$ or the columns of $E_i$ are independent sub-Gaussian random vectors. Numerical studies on simulated and real data indicate that our procedure is competitive, in terms of both estimation error and predictive accuracy, compared to other existing methods.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - OPORP: One Permutation + One Random Projection [37.6593006747285]
OPORP uses a variant of the count-sketch'' type of data structures for achieving data reduction/compression.
One crucial step is to normalize the $k$ samples to the unit $l$ norm.
With OPORP, the two key steps: (i) the normalization and (ii) the fixed-length binning scheme, have considerably improved the accuracy in estimating the cosine similarity.
arXiv Detail & Related papers (2023-02-07T14:45:34Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly.
We provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $epsilon$ error with $delta$ failure probability.
Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error even in the static setting, and (2) are the first unconditional lower bounds for dynamic trace estimation.
arXiv Detail & Related papers (2022-09-30T04:15:44Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Chi-square and normal inference in high-dimensional multi-task
regression [7.310043452300736]
The paper proposes chi-square and normal methodologies for the unknown coefficient matrix $B*$ of size $ptimes T$ in a Multi-Task (MT) linear model.
arXiv Detail & Related papers (2021-07-16T11:19:49Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
In truncated linear regression, $(A_i, y_i)_i$ whose dependent variable equals $y_i= A_irm T cdot x* + eta_i$ is some fixed unknown vector of interest.
The goal is to recover $x*$ under some favorable conditions on the $A_i$'s and the noise distribution.
We prove that there exists a computationally and statistically efficient method for recovering $k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated samples.
arXiv Detail & Related papers (2020-07-29T00:31:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.