論文の概要: Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair
- arxiv url: http://arxiv.org/abs/2404.19250v1
- Date: Tue, 30 Apr 2024 04:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:33:46.259365
- Title: Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair
- Title(参考訳): バイアス・コントラスト・ペアにおけるクラス識別コモン属性の探索による内在的特徴のデバイアス化
- Authors: Jeonghoon Park, Chaeyeon Chung, Juyoung Lee, Jaegul Choo,
- Abstract要約: ディープニューラルネットワークは、データセットバイアスの存在下でターゲットクラスと急激な相関を持つバイアス特性に依存している。
本稿では,本質的特徴の領域を示す空間的指示を明示的に提示する手法を提案する。
実験により, 種々のバイアス重大度を有する合成および実世界のデータセットに対して, 最先端の性能を達成できることが実証された。
- 参考スコア(独自算出の注目度): 36.221761997349795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the image classification task, deep neural networks frequently rely on bias attributes that are spuriously correlated with a target class in the presence of dataset bias, resulting in degraded performance when applied to data without bias attributes. The task of debiasing aims to compel classifiers to learn intrinsic attributes that inherently define a target class rather than focusing on bias attributes. While recent approaches mainly focus on emphasizing the learning of data samples without bias attributes (i.e., bias-conflicting samples) compared to samples with bias attributes (i.e., bias-aligned samples), they fall short of directly guiding models where to focus for learning intrinsic features. To address this limitation, this paper proposes a method that provides the model with explicit spatial guidance that indicates the region of intrinsic features. We first identify the intrinsic features by investigating the class-discerning common features between a bias-aligned (BA) sample and a bias-conflicting (BC) sample (i.e., bias-contrastive pair). Next, we enhance the intrinsic features in the BA sample that are relatively under-exploited for prediction compared to the BC sample. To construct the bias-contrastive pair without using bias information, we introduce a bias-negative score that distinguishes BC samples from BA samples employing a biased model. The experiments demonstrate that our method achieves state-of-the-art performance on synthetic and real-world datasets with various levels of bias severity.
- Abstract(参考訳): 画像分類タスクでは、ディープニューラルネットワークは、データセットバイアスが存在する場合、ターゲットクラスと突発的に相関するバイアス特性にしばしば依存し、バイアス属性のないデータに適用した場合、性能が低下する。
Debiasingのタスクは、バイアス属性ではなく、本質的にターゲットクラスを定義する固有の属性を学ぶために、分類器を強制することを目的としている。
近年のアプローチでは、バイアス特性のないデータサンプルの学習(すなわちバイアス強調サンプル)をバイアス特性を持つサンプル(すなわちバイアス整合サンプル)と比較して強調する傾向にあるが、本質的な特徴の学習に焦点をあてるモデルを直接指導するには至っていない。
この制限に対処するため,本研究では,本質的な特徴の領域を示す明示的な空間的ガイダンスをモデルに提供する手法を提案する。
まず, バイアス整合型 (BA) サンプルとバイアス整合型 (BC) サンプル (バイアス整合型 (BC) ペア) のクラス識別共通特徴について検討した。
次に, BA試料の内在的特徴をBC試料と比較した場合, 予測にはあまり役に立たなかった。
バイアス情報を使わずにバイアス競合対を構築するために,バイアスモデルを用いたBAサンプルとBCサンプルを区別するバイアス負スコアを導入する。
実験により, 種々のバイアス重大度を有する合成および実世界のデータセットに対して, 最先端の性能を達成できることが実証された。
関連論文リスト
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
バイアス付きデータに基づいてトレーニングされたディープニューラルネットワークは、意図しない推論ルールを不注意に学習することが多い。
本稿では,モデルのパラメータ空間内で直接バイアスに対処する新しい手法を提案する。
各種合成および実世界のデータセットにおいて,分類精度の向上と偏りの低減効果を示す。
論文 参考訳(メタデータ) (2024-10-19T13:06:40Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
統計的観点から「データセットバイアス」問題を考察する。
問題の主な原因は、クラス属性 u と非クラス属性 b の強い相関関係である。
本稿では,各試料nの目的をフラクタル1p(u_n|b_n)で重み付けするか,その試料をフラクタル1p(u_n|b_n)に比例してサンプリングすることにより,データセットバイアスを軽減することを提案する。
論文 参考訳(メタデータ) (2024-02-05T22:58:06Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models [52.03761198830643]
IBADR(Iterative Bias-Aware dataset Refinement framework)を提案する。
まず、プール内のサンプルのバイアス度を定量化するために浅いモデルを訓練する。
次に、各サンプルにバイアス度を表すバイアス指標をペアにして、これらの拡張サンプルを使用してサンプルジェネレータを訓練する。
このようにして、このジェネレータは、バイアスインジケータとサンプルの対応関係を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-11-01T04:50:38Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
本稿では,既存のバイアスモデルがトレーニングデータにおけるバイアス強調サンプルに過度に適合していることを明らかにする実験的検討を行った。
本研究では、バイアスモデルとターゲットモデルを異なる戦略で訓練するEchoesという、単純で効果的な手法を提案する。
提案手法は,既存の合成データセットと実世界のデータセットのベースラインと比較して,優れたデバイアス化結果が得られる。
論文 参考訳(メタデータ) (2023-05-06T13:13:18Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
本稿では, 様々なバイアスを伴うサンプルを用いたトレーニングが, 脱バイアスに不可欠であることを示す実験的検討を行った。
本稿では, 多様なバイアス分散サンプルを合成するために, 特徴レベルのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-07-03T08:03:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。