Quantum control in the presence of strongly coupled non-Markovian noise
- URL: http://arxiv.org/abs/2404.19251v1
- Date: Tue, 30 Apr 2024 04:16:44 GMT
- Title: Quantum control in the presence of strongly coupled non-Markovian noise
- Authors: Arinta Auza, Akram Youssry, Gerardo Paz-Silva, Alberto Peruzzo,
- Abstract summary: Controlling quantum systems under correlated non-Markovian noise, particularly when strongly coupled, poses significant challenges in the development of quantum technologies.
Here, we address the problem by utilizing a data-driven graybox model, which integrates machine learning structures with physics-based elements.
We demonstrate single-qubit control, implementing a universal gate set as well as a random gate set, achieving high fidelity under unknown, strongly-coupled non-Markovian non-Gaussian noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling quantum systems under correlated non-Markovian noise, particularly when strongly coupled, poses significant challenges in the development of quantum technologies. Traditional quantum control strategies, heavily reliant on precise models, often fail under these conditions. Here, we address the problem by utilizing a data-driven graybox model, which integrates machine learning structures with physics-based elements. We demonstrate single-qubit control, implementing a universal gate set as well as a random gate set, achieving high fidelity under unknown, strongly-coupled non-Markovian non-Gaussian noise, significantly outperforming traditional methods. Our method is applicable to all open finite-dimensional quantum systems, regardless of the type of noise or the strength of the coupling.
Related papers
- Adiabatic echo protocols for robust quantum many-body state preparation [37.69303106863453]
We introduce the adiabatic echo protocol, a general approach to state preparation designed to suppress the effect of static perturbations.<n>We show that such a protocol emerges naturally in a variety of settings, without requiring assumptions on the form of the control fields.<n>Our results highlight the broad applicability of this protocol, providing a practical framework for reliable many-body state preparation in present-day quantum platforms.
arXiv Detail & Related papers (2025-06-13T18:01:08Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Traversing Quantum Control Robustness Landscapes: A New Paradigm for Quantum Gate Engineering [0.0]
We introduce the Quantum Control Robustness Landscape (QCRL), a conceptual framework that maps control parameters to noise susceptibility.
By navigating through the level sets of the QCRL, our Robustness-Invariant Pulse Variation (RIPV) algorithm allows for the variation of control pulses while preserving robustness.
Numerical simulations demonstrate that our single- and two-qubit gates exceed the quantum error correction threshold even with substantial noise.
arXiv Detail & Related papers (2024-12-27T05:56:38Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Universal robust quantum gates by geometric correspondence of noisy
quantum dynamics [0.0]
We develop a theory to capture quantum dynamics due to various noises graphically, obtaining the quantum erroneous evolution diagrams (QEED)
We then develop a protocol to engineer a universal set of single- and two-qubit robust gates that correct the generic errors.
Our approach offers new insights into the geometric aspects of noisy quantum dynamics and several advantages over existing methods.
arXiv Detail & Related papers (2022-10-26T07:21:02Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
We present a novel framework for efficiently controlling quantum many-body systems based on reinforcement learning (RL)
We show that RL agents are capable of finding universal controls, of learning how to optimally steer previously unseen many-body states, and of adapting control protocols on-thefly when the quantum dynamics is subject to perturbations.
arXiv Detail & Related papers (2022-01-27T20:14:09Z) - Quantum dot-based high-fidelity universal quantum gates in noisy environment [0.5120567378386615]
We investigate a quantum dot-based universal set of quantum gates (single qubit gates and the Toffoli gate) in the presence of hyperfine fluctuation noise and phononic charge noise.
We model the spin dynamics and noise processes in the NOT gate, Hadamard gate and the Toffoli gate using the Lindblad master equation formalism.
The generality of the framework proposed in this paper enables modeling of larger quantum processors based on spin qubits in realistic conditions.
arXiv Detail & Related papers (2021-05-14T18:27:45Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates\\ with Optimal Control in a Trapped Ion [38.217839102257365]
We experimentally demonstrate nonadiabatic holonomic single qubit quantum gates with optimal control in a trapped Yb ion.
Compared with corresponding previous geometric gates and conventional dynamic gates, the superiority of our scheme is that it is more robust against control amplitude errors.
arXiv Detail & Related papers (2020-06-08T14:06:06Z) - Demonstration of non-Markovian process characterisation and control on a
quantum processor [0.0]
Non-Markovian noise poses a serious challenge to the progression of quantum technology.
We develop a framework for characterising non-Markovian dynamics in quantum systems.
Our results show this characterisation technique leads to superior quantum control and extension of coherence time.
arXiv Detail & Related papers (2020-04-29T08:29:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.