論文の概要: C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks
- arxiv url: http://arxiv.org/abs/2404.19276v1
- Date: Tue, 30 Apr 2024 05:51:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:23:59.531746
- Title: C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks
- Title(参考訳): C2FDrone:視覚変換器ネットワークを用いた粗大なドローン間距離検出
- Authors: Sairam VC Rebbapragada, Pranoy Panda, Vineeth N Balasubramanian,
- Abstract要約: 衝突回避、敵のドローン対策、捜索救助活動など、さまざまな用途において、視覚に基づくドローンからドローンまでの検出システムは不可欠である。
ドローンの検出には、小さなオブジェクトのサイズ、歪み、リアルタイム処理要求など、ユニークな課題がある。
本稿では,視覚変換器に基づく粗大な検出手法を提案する。
- 参考スコア(独自算出の注目度): 23.133250476580038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A vision-based drone-to-drone detection system is crucial for various applications like collision avoidance, countering hostile drones, and search-and-rescue operations. However, detecting drones presents unique challenges, including small object sizes, distortion, occlusion, and real-time processing requirements. Current methods integrating multi-scale feature fusion and temporal information have limitations in handling extreme blur and minuscule objects. To address this, we propose a novel coarse-to-fine detection strategy based on vision transformers. We evaluate our approach on three challenging drone-to-drone detection datasets, achieving F1 score enhancements of 7%, 3%, and 1% on the FL-Drones, AOT, and NPS-Drones datasets, respectively. Additionally, we demonstrate real-time processing capabilities by deploying our model on an edge-computing device. Our code will be made publicly available.
- Abstract(参考訳): 衝突回避、敵のドローン対策、捜索救助活動など、さまざまな用途において、視覚に基づくドローンからドローンまでの検出システムは不可欠である。
しかし、ドローンの検出には、小さなオブジェクトのサイズ、歪み、閉塞、リアルタイム処理要求など、ユニークな課題がある。
マルチスケールな特徴融合と時間情報を統合する現在の手法は、極端にぼやけたオブジェクトや極小オブジェクトを扱う場合に制限がある。
そこで本研究では,視覚変換器に基づく粗大な検出手法を提案する。
FL-Drones,AOT,NPS-Dronesの各データセットでF1スコアが7%,3%,1%向上した。
さらに、エッジコンピューティングデバイスにモデルをデプロイすることで、リアルタイム処理能力を実演する。
私たちのコードは公開されます。
関連論文リスト
- DroneMOT: Drone-based Multi-Object Tracking Considering Detection Difficulties and Simultaneous Moving of Drones and Objects [6.449663756698312]
監視カメラなどの静的プラットフォーム上でのマルチオブジェクトトラッキング(MOT)は、大きな進歩を遂げている。
しかし、ドローンのような動的プラットフォームに関しては、従来のMOT手法の有効性は著しく低下している。
本稿では,ドローンによる物体検出の高速化と,小型でぼやけた,隠蔽された物体に対する特徴埋め込みを目的とした,ドローンの高速移動を考慮したDroneMOTを提案する。
論文 参考訳(メタデータ) (2024-07-12T07:18:18Z) - DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
ドローン検出は、画像の可視性や品質が好ましくないような、困難な物体検出タスクである。
私たちの仕事は、いくつかの改善を組み合わせることで、以前のアプローチを改善します。
提案された技術は、Drone vs. Bird Challengeで1位を獲得した。
論文 参考訳(メタデータ) (2024-06-30T20:49:56Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDARは、自律走行シーンのLiDAR点雲のための完全な1段式3Dオブジェクト検出器である。
標準的な2Dコンボリューションを持つRVベースの3D検出器は、最先端のBEVベースの検出器と同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-05-27T05:42:16Z) - Lightweight Multi-Drone Detection and 3D-Localization via YOLO [1.284647943889634]
本稿では,実時間複数ドローン検出と3次元位置推定を行う手法を提案し,評価する。
我々は最先端の小さなYOLOv4オブジェクト検出アルゴリズムとステレオ三角測量を用いる。
我々のコンピュータビジョンアプローチは、計算コストのかかるステレオマッチングアルゴリズムを不要にする。
論文 参考訳(メタデータ) (2022-02-18T09:41:23Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
自律走行のためのLiDARを用いた3次元物体検出では、物体サイズと入力シーンサイズとの比が2次元検出の場合に比べて有意に小さい。
多くの3D検出器は2D検出器の一般的な慣習に従っており、点雲の定量化後も特徴マップを分解する。
本稿では,SST(Single-stride Sparse Transformer)を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:12:02Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
本稿では、オブジェクト検出・追跡データセットとベンチマークのレビューを行い、手動アノテーションによる大規模ドローンによるオブジェクト検出・追跡データセットの収集の課題について論じる。
当社のVisDroneデータセットは、中国北部から南部にかけての14の都市部と郊外部で収集されたものです。
本稿では,ドローンにおける大規模物体検出・追跡の現場の現状を詳細に分析し,今後の方向性を提案するとともに,課題を結論づける。
論文 参考訳(メタデータ) (2020-01-16T00:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。