MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction
- URL: http://arxiv.org/abs/2404.19283v1
- Date: Tue, 30 Apr 2024 06:21:42 GMT
- Title: MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction
- Authors: Marlon Steiner, Marvin Klemp, Christoph Stiller,
- Abstract summary: There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed.
Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents.
This paper introduces a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a scene-centric'' manner.
- Score: 6.110153599741102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed. Closing this gap necessitates advancements in prediction beyond current practices. Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents. Although, these methods achieve high accurate trajectory predictions, they only provide little or no information about the dependencies of interacting agents. Since traffic is a process of highly interdependent agents, whose actions directly influence their mutual behavior, the existing methods are not sufficient to reliably assess the risk of future trajectories. This paper addresses that gap by introducing a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a ``scene-centric'' manner, which can then be used to model Gaussian joint PDFs for all agent-pairs in a scene. We propose a model capable of predicting those agent-pair covariance matrices, leveraging an enhanced awareness of interactions. Utilizing the prediction results of our model, this work forms the foundation for comprehensive risk assessment with statistically based methods for analyzing agents' relations by their joint PDFs.
Related papers
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPT is a novel approach for jointly predicting the trajectories of all agents in the scene with dynamic weight learning.
Our approach outperforms state-of-the-art methods in both single-agent and multi-agent settings.
arXiv Detail & Related papers (2023-07-26T13:41:51Z) - Leveraging Future Relationship Reasoning for Vehicle Trajectory
Prediction [27.614778027454417]
We propose a novel approach that uses lane information to predict a future relationship among agents.
To obtain a coarse future motion of agents, our method first predicts the probability of lane-level waypoint occupancy of vehicles.
We then utilize the temporal probability of passing adjacent lanes for each agent pair, assuming that agents passing adjacent lanes will highly interact.
arXiv Detail & Related papers (2023-05-24T04:33:28Z) - M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction [26.49897317427192]
Existing models excel at predicting marginal trajectories for single agents, yet it remains an open question to jointly predict scene compliant trajectories over multiple agents.
In this work, we exploit the underlying relations between interacting agents and decouple the joint prediction problem into marginal prediction problems.
Our proposed approach M2I first classifies interacting agents as pairs of influencers and reactors, and then leverages a marginal prediction model and a conditional prediction model to predict trajectories for the influencers and reactors, respectively.
arXiv Detail & Related papers (2022-02-24T03:28:26Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
We present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents' class probabilities.
We additionally present PUP, a new challenging real-world autonomous driving dataset.
We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty.
arXiv Detail & Related papers (2021-04-26T10:28:34Z) - Fast Risk Assessment for Autonomous Vehicles Using Learned Models of
Agent Futures [10.358493658420173]
This paper presents fast non-sampling based methods to assess the risk of trajectories for autonomous vehicles.
The presented methods address a wide range of representations for uncertain predictions including both Gaussian and non-Gaussian mixture models.
The presented methods are demonstrated on realistic predictions from propagates trained on the Argoverse and CARLA datasets.
arXiv Detail & Related papers (2020-05-27T16:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.