M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction
- URL: http://arxiv.org/abs/2202.11884v1
- Date: Thu, 24 Feb 2022 03:28:26 GMT
- Title: M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction
- Authors: Qiao Sun, Xin Huang, Junru Gu, Brian C. Williams, Hang Zhao
- Abstract summary: Existing models excel at predicting marginal trajectories for single agents, yet it remains an open question to jointly predict scene compliant trajectories over multiple agents.
In this work, we exploit the underlying relations between interacting agents and decouple the joint prediction problem into marginal prediction problems.
Our proposed approach M2I first classifies interacting agents as pairs of influencers and reactors, and then leverages a marginal prediction model and a conditional prediction model to predict trajectories for the influencers and reactors, respectively.
- Score: 26.49897317427192
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting future motions of road participants is an important task for
driving autonomously in urban scenes. Existing models excel at predicting
marginal trajectories for single agents, yet it remains an open question to
jointly predict scene compliant trajectories over multiple agents. The
challenge is due to exponentially increasing prediction space as a function of
the number of agents. In this work, we exploit the underlying relations between
interacting agents and decouple the joint prediction problem into marginal
prediction problems. Our proposed approach M2I first classifies interacting
agents as pairs of influencers and reactors, and then leverages a marginal
prediction model and a conditional prediction model to predict trajectories for
the influencers and reactors, respectively. The predictions from interacting
agents are combined and selected according to their joint likelihoods.
Experiments show that our simple but effective approach achieves
state-of-the-art performance on the Waymo Open Motion Dataset interactive
prediction benchmark.
Related papers
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction [6.110153599741102]
There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed.
Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents.
This paper introduces a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a scene-centric'' manner.
arXiv Detail & Related papers (2024-04-30T06:21:42Z) - Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
We introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE)
MATE assesses the interactive motion of agents by employing neural interaction energy.
To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint.
arXiv Detail & Related papers (2024-04-25T12:47:47Z) - Kraken: enabling joint trajectory prediction by utilizing Mode
Transformer and Greedy Mode Processing [1.1652135545484206]
Kraken is a real-time trajectory prediction model capable of approximating pairwise interactions between actors.
We evaluate Kraken on Motion Prediction challenge where it held the first place in the leaderboard and the second place in the Interaction Motion leaderboard in October 2021.
arXiv Detail & Related papers (2023-12-08T16:24:05Z) - Leveraging Future Relationship Reasoning for Vehicle Trajectory
Prediction [27.614778027454417]
We propose a novel approach that uses lane information to predict a future relationship among agents.
To obtain a coarse future motion of agents, our method first predicts the probability of lane-level waypoint occupancy of vehicles.
We then utilize the temporal probability of passing adjacent lanes for each agent pair, assuming that agents passing adjacent lanes will highly interact.
arXiv Detail & Related papers (2023-05-24T04:33:28Z) - ProspectNet: Weighted Conditional Attention for Future Interaction
Modeling in Behavior Prediction [5.520507323174275]
We formulate the end-to-end joint prediction problem as a sequential learning process of marginal learning and joint learning of vehicle behaviors.
We propose ProspectNet, a joint learning block that adopts the weighted attention score to model the mutual influence between interactive agent pairs.
We show that ProspectNet outperforms the Cartesian product of two marginal predictions, and achieves comparable performance on the Interactive Motion Prediction benchmarks.
arXiv Detail & Related papers (2022-08-29T19:29:49Z) - Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction [32.970169015894705]
We formulate an attention model for multi-agent interactions based on a total variation temporal smoothness prior.
We show its advantages in terms of prediction accuracy by comparing it with the state-of-the-art approaches on both synthetic and naturalistic driving data.
arXiv Detail & Related papers (2022-03-08T21:54:28Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
We propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN) which predicts trajectories of heterogeneous agents in multiply categories.
Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously.
A hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction.
arXiv Detail & Related papers (2021-07-31T13:36:04Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.