Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition
- URL: http://arxiv.org/abs/2404.19317v1
- Date: Tue, 30 Apr 2024 07:37:48 GMT
- Title: Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition
- Authors: Solène Tarride, Christopher Kermorvant,
- Abstract summary: This study addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition.
We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models.
The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets.
- Score: 4.059708117119894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent advances in automatic text recognition (ATR), deep neural networks have demonstrated the ability to implicitly capture language statistics, potentially reducing the need for traditional language models. This study directly addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition. We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models. Our experiments on three datasets - IAM, RIMES, and NorHand v2 - at both line and page level, investigate optimal parameters for n-gram models, including their order, weight, smoothing methods and tokenization level. The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets, challenging the notion that deep learning models alone are sufficient for optimal performance. In particular, the combination of DAN with a character language model outperforms current benchmarks, confirming the value of hybrid approaches in modern document analysis systems.
Related papers
- In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
We study ICL through the lens of a new family of model problems we term in context language learning (ICLL)
We evaluate a diverse set of neural sequence models on regular ICLL tasks.
arXiv Detail & Related papers (2024-01-23T18:59:21Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification [0.0]
Convolutional neural network (CNN) has shown remarkable success in the task of text classification.
New baseline models have been studied for text classification using CNN.
Results have shown that the proposed models have better performance, particularly in the longer documents.
arXiv Detail & Related papers (2023-01-27T13:16:02Z) - Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing [9.645196221785694]
We develop an approach called the latent indicator layer to identify and learn implicit hierarchical information.
We also develop an EM algorithm to handle the latent indicator layer in training.
We show that the EM-HRNN model with bootstrap training outperforms other RNN-based models in document classification tasks.
arXiv Detail & Related papers (2022-01-21T23:08:33Z) - Continuous Offline Handwriting Recognition using Deep Learning Models [0.0]
Handwritten text recognition is an open problem of great interest in the area of automatic document image analysis.
We have proposed a new recognition model based on integrating two types of deep learning architectures: convolutional neural networks (CNN) and sequence-to-sequence (seq2seq)
The new proposed model provides competitive results with those obtained with other well-established methodologies.
arXiv Detail & Related papers (2021-12-26T07:31:03Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Towards Trustworthy Deception Detection: Benchmarking Model Robustness
across Domains, Modalities, and Languages [10.131671217810581]
We evaluate model robustness to out-of-domain data, modality-specific features, and languages other than English.
We find that with additional image content as input, ELMo embeddings yield significantly fewer errors compared to BERT orGLoVe.
arXiv Detail & Related papers (2021-04-23T18:05:52Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
Linguistic knowledge is of great benefit to scene text recognition.
How to effectively model linguistic rules in end-to-end deep networks remains a research challenge.
We propose an autonomous, bidirectional and iterative ABINet for scene text recognition.
arXiv Detail & Related papers (2021-03-11T06:47:45Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
We present Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data.
Based on experimental results, neural semantics that leverage GAP MODEL obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-generative benchmarks.
arXiv Detail & Related papers (2020-12-18T15:53:50Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Abstractive Text Summarization based on Language Model Conditioning and
Locality Modeling [4.525267347429154]
We train a Transformer-based neural model on the BERT language model.
In addition, we propose a new method of BERT-windowing, which allows chunk-wise processing of texts longer than the BERT window size.
The results of our models are compared to a baseline and the state-of-the-art models on the CNN/Daily Mail dataset.
arXiv Detail & Related papers (2020-03-29T14:00:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.