Exploring Multi-Lingual Bias of Large Code Models in Code Generation
- URL: http://arxiv.org/abs/2404.19368v1
- Date: Tue, 30 Apr 2024 08:51:49 GMT
- Title: Exploring Multi-Lingual Bias of Large Code Models in Code Generation
- Authors: Chaozheng Wang, Zongjie Li, Cuiyun Gao, Wenxuan Wang, Ting Peng, Hailiang Huang, Yuetang Deng, Shuai Wang, Michael R. Lyu,
- Abstract summary: Code generation aims to synthesize code and fulfill functional requirements based on natural language (NL) specifications.
Despite the effectiveness, we observe a noticeable multilingual bias in the generation performance of large code models (LCMs)
LCMs demonstrate proficiency in generating solutions when provided with instructions in English, yet may falter when faced with semantically equivalent instructions in other NLs such as Chinese.
- Score: 55.336629780101475
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Code generation aims to synthesize code and fulfill functional requirements based on natural language (NL) specifications, which can greatly improve development efficiency. In the era of large language models (LLMs), large code models (LCMs) have been recently proposed to generate source code. LCMs can generate highly feasible solutions for programming problems described in natural language. Despite the effectiveness, we observe a noticeable multilingual bias in the generation performance of LCMs. Specifically, LCMs demonstrate proficiency in generating solutions when provided with instructions in English, yet may falter when faced with semantically equivalent instructions in other NLs such as Chinese. Moreover, the ability of LCMs to generate code exhibits variety across different programming languages (PLs), such as Python and C++. The observed phenomenon indicates the presence of multi-lingual bias within the generative capabilities of LCMs, which has remained unexplored. In this paper, we aim to investigate the multi-lingual bias that exists in current LCMs. First, we initiate our investigation by constructing the first multi-lingual evaluation benchmark X-HumanEval-X, enabling us to systematically evaluate the extent of multi-lingual bias that exists in current LCMs. In our large-scale experiments on nine popular LCMs, we observe a pronounced multi-lingual bias of LCMs in code generation, including multi-NL and multi-PL bias. Specifically, when using Chinese instructions, the code generation capabilities of LCMs decrease by at least 13% in terms of the Pass@1 metric. Furthermore, LCMs perform variously across different programming languages, e.g., the performance gap between Python and C++ reaches as high as 20.9%. ...
Related papers
- Code-mixed LLM: Improve Large Language Models' Capability to Handle Code-Mixing through Reinforcement Learning from AI Feedback [11.223762031003671]
Code-mixing introduces unique challenges in daily life, such as syntactic mismatches and semantic blending.
Large language models (LLMs) have revolutionized the field of natural language processing (NLP) by offering unprecedented capabilities in understanding human languages.
We propose to improve the multilingual LLMs' ability to understand code-mixing through reinforcement learning from human feedback (RLHF) and code-mixed machine translation tasks.
arXiv Detail & Related papers (2024-11-13T22:56:00Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - mHumanEval -- A Multilingual Benchmark to Evaluate Large Language Models for Code Generation [28.531581489405745]
mHumanEval is an extended benchmark supporting prompts in over 200 natural languages.
We provide expert human translations for 15 diverse natural languages (NLs)
We conclude by analyzing the multilingual code generation capabilities of state-of-the-art (SOTA) Code LLMs.
arXiv Detail & Related papers (2024-10-19T08:44:26Z) - Multi-Programming Language Ensemble for Code Generation in Large Language Model [5.882816711878273]
Large language models (LLMs) have significantly improved code generation, particularly in one-pass code generation.
Most existing approaches focus solely on generating code in a single programming language, overlooking the potential of leveraging the multi-language capabilities of LLMs.
We propose Multi-Programming Language Ensemble (MPLE), a novel ensemble-based method that utilizes code generation across multiple programming languages to enhance overall performance.
arXiv Detail & Related papers (2024-09-06T08:31:18Z) - CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution [50.7413285637879]
The CRUXEVAL-X code reasoning benchmark contains 19 programming languages.
It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total.
Even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages.
arXiv Detail & Related papers (2024-08-23T11:43:00Z) - Large Language Models for cross-language code clone detection [3.5202378300682162]
Cross-lingual code clone detection has gained traction with the software engineering community.
Inspired by the significant advances in machine learning, this paper revisits cross-lingual code clone detection.
arXiv Detail & Related papers (2024-08-08T12:57:14Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
This work investigates the prospect of leveraging compiler intermediate representations (IR) to improve the multilingual capabilities of Code-LMs.
We first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files.
Next, we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to learn the IR language.
Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics.
arXiv Detail & Related papers (2024-03-06T17:52:08Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.