論文の概要: Let's Focus: Focused Backdoor Attack against Federated Transfer Learning
- arxiv url: http://arxiv.org/abs/2404.19420v1
- Date: Tue, 30 Apr 2024 10:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:44:45.995840
- Title: Let's Focus: Focused Backdoor Attack against Federated Transfer Learning
- Title(参考訳): 焦点を合わせよう:フェデレーション・トランスファー・ラーニングに対するバックドア・アタック
- Authors: Marco Arazzi, Stefanos Koffas, Antonino Nocera, Stjepan Picek,
- Abstract要約: フェデレート・トランスファー・ラーニング(Federated Transfer Learning, FTL)は、フェデレート・ラーニングの最も一般的なバリエーションである。
本稿では,この興味深いフェデレーション学習シナリオを検証し,脆弱性を特定して活用する。
提案した攻撃は、FTLのフェデレートラーニングフェーズにおいて、クライアントの1つによって実行される。
- 参考スコア(独自算出の注目度): 12.68970864847173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Transfer Learning (FTL) is the most general variation of Federated Learning. According to this distributed paradigm, a feature learning pre-step is commonly carried out by only one party, typically the server, on publicly shared data. After that, the Federated Learning phase takes place to train a classifier collaboratively using the learned feature extractor. Each involved client contributes by locally training only the classification layers on a private training set. The peculiarity of an FTL scenario makes it hard to understand whether poisoning attacks can be developed to craft an effective backdoor. State-of-the-art attack strategies assume the possibility of shifting the model attention toward relevant features introduced by a forged trigger injected in the input data by some untrusted clients. Of course, this is not feasible in FTL, as the learned features are fixed once the server performs the pre-training step. Consequently, in this paper, we investigate this intriguing Federated Learning scenario to identify and exploit a vulnerability obtained by combining eXplainable AI (XAI) and dataset distillation. In particular, the proposed attack can be carried out by one of the clients during the Federated Learning phase of FTL by identifying the optimal local for the trigger through XAI and encapsulating compressed information of the backdoor class. Due to its behavior, we refer to our approach as a focused backdoor approach (FB-FTL for short) and test its performance by explicitly referencing an image classification scenario. With an average 80% attack success rate, obtained results show the effectiveness of our attack also against existing defenses for Federated Learning.
- Abstract(参考訳): フェデレート・トランスファー・ラーニング(Federated Transfer Learning, FTL)は、フェデレート・ラーニングの最も一般的なバリエーションである。
この分散パラダイムによると、機能学習の事前ステップは通常、公開共有データ上で、ひとつのパーティ(典型的にはサーバ)によって実行される。
その後、フェデレートラーニングフェーズが行われ、学習した特徴抽出器を使って分類器を協調的に訓練する。
それぞれのクライアントは、プライベートなトレーニングセット上の分類レイヤのみをローカルにトレーニングすることで貢献する。
FTLシナリオの特異性は、効果的なバックドアを構築するために中毒攻撃を開発できるかどうかを理解するのを困難にしている。
最先端の攻撃戦略は、信頼できないクライアントによって入力データに注入された偽トリガーによって導入された関連する特徴に対してモデル注意をシフトする可能性を前提としている。
もちろん、これはFTLでは実現できない。サーバが事前トレーニングのステップを実行したら、学習した機能が修正されるからだ。
そこで本稿では,eXplainable AI(XAI)とデータセット蒸留を組み合わせた脆弱性を識別し,活用するために,この興味深いフェデレーション学習シナリオについて検討する。
特に,提案攻撃は,FTLのフェデレートラーニングフェーズにおいて,XAIを介してトリガの最適なローカルを特定し,バックドアクラスの圧縮情報をカプセル化する。
その振る舞いから,本手法を焦点を絞ったバックドアアプローチ(FB-FTL,略してFB-FTL)と呼び,画像分類シナリオを明示的に参照することにより,その性能を検証した。
その結果、平均80%の攻撃成功率で、既存のフェデレート学習に対する攻撃の有効性が示された。
関連論文リスト
- A Stealthy Wrongdoer: Feature-Oriented Reconstruction Attack against Split Learning [14.110303634976272]
Split Learning(SL)は、プライバシ保護機能と最小限の計算要件で有名な分散学習フレームワークである。
以前の研究は、トレーニングデータを再構築するサーバ敵によるSLシステムの潜在的なプライバシー侵害について、一貫して強調している。
本稿では,特徴指向再構築攻撃 (FORA) という,SL上での半正直なデータ再構成攻撃について紹介する。
論文 参考訳(メタデータ) (2024-05-07T08:38:35Z) - Membership Information Leakage in Federated Contrastive Learning [7.822625013699216]
Federated Contrastive Learning (FCL) は、分散化されたラベルなしデータから学ぶための急成長するアプローチである。
FCLは、メンバーシップ情報漏洩など、その分散特性から生じるプライバシーリスクに影響を受けやすい。
本研究は、FCLに対するメンバシップ推論攻撃の実行可能性について検討し、ロバスト攻撃手法を提案する。
論文 参考訳(メタデータ) (2024-03-06T19:53:25Z) - FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning [0.0]
Federated Learning(FL)は、集中型機械学習(ML)デプロイメントに関連する典型的なプライバシ問題に対する、有望なアプローチである。
そのよく知られた利点にもかかわらず、FLはビザンツの行動や毒殺攻撃のようなセキュリティ攻撃に弱い。
提案手法は各種モデル毒殺攻撃に対して試験され,最先端の凝集法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-15T16:42:04Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
特徴相関に基づくアグリゲーション(FedFoA)を用いたフェデレーション型自己教師型学習法を提案する。
私たちの洞察は、機能相関を利用して、特徴マッピングを整列し、ローカルトレーニングプロセス中にクライアント間でローカルモデルの更新を校正することにあります。
我々はFedFoAがモデルに依存しないトレーニングフレームワークであることを証明する。
論文 参考訳(メタデータ) (2022-11-14T13:59:50Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Defending Label Inference and Backdoor Attacks in Vertical Federated
Learning [11.319694528089773]
共同学習では、好奇心が強いパリティは正直かもしれないが、推論攻撃を通じて他人の個人データを推測しようとしている。
本稿では,サンプルごとの勾配から,プライベートラベルを再構築可能であることを示す。
本稿では、オートエンコーダとエントロピー正規化に基づく、混乱型オートエンコーダ(CoAE)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-10T09:32:09Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。