Negative transit time in non-tunneling electron transmission through graphene multilayers
- URL: http://arxiv.org/abs/2404.19440v1
- Date: Tue, 30 Apr 2024 10:43:04 GMT
- Title: Negative transit time in non-tunneling electron transmission through graphene multilayers
- Authors: E. E. Krasovskii, R. O. Kuzian,
- Abstract summary: The temporal character of the electron propagation through graphene multilayers is traced to the band structure of bulk graphite.
The spatial reshaping of the wave packet at the resonances may help elucidate details of the streaking by an inhomogeneous field at the surface.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attosecond dynamics of electron transmission through atomically-thin crystalline films is studied with an {\em ab initio} scattering theory. The temporal character of the electron propagation through graphene multilayers is traced to the band structure of bulk graphite: In the forbidden gaps the wave packet transit time $\tau_\mathrm{T}$ saturates with thickness and in the allowed bands $\tau_\mathrm{T}$ oscillates following transmission resonances. Hitherto unknown negative transit time due to in-plane scattering is discovered in monolayers of graphene, h-BN, and oxygen. Moreover, Wigner time delay is found to diverge at the scattering resonances caused by the emergence of secondary diffracted beams. This offers a way to manipulate the propagation timing of the wave packet without sacrificing the transmitted intensity. The spatial reshaping of the wave packet at the resonances may help elucidate details of the streaking by an inhomogeneous field at the surface.
Related papers
- Second-order nonlocal shifts of scattered wave-packets: What can be measured by Goos-Hänchen and Imbert-Fedorov effects ? [0.0]
It is found that the Goos-H"anchen and Imbert-Fedorov effect are absent for homogeneous materials.
The Wigner delay time and the shrinking of the temporal pulse width allows to access the dielectric function independent on the beam geometry.
arXiv Detail & Related papers (2024-08-01T08:32:37Z) - Spatial quasiperiodic driving of a dissipative optical lattice and origin of directed Brillouin modes in a randomly diffusing cold atom cloud [34.82692226532414]
Atoms confined in a three-dimensional dissipative optical lattice oscillate inside potential wells, hopping to adjacent wells, thereby diffusing in all directions.
Illumination by a weak probe beam modulates the lattice, yielding propagating atomic density waves, referred to as Brillouin modes which travel perpendicular to the direction of travel of the probe.
A systematic measurement of the transmitted probe spectra as a function of off-axis probe angle is presented, which is consistent with the velocity- and frequency-matching predictions from the detailed model.
arXiv Detail & Related papers (2023-09-06T19:10:21Z) - Near-field diffraction of protons by a nanostructured metallic grating
under external electric field: Asymmetry and sidebands in Talbot self-imaging [0.0]
Self-imaging in near-field diffraction is a practical application of coherent manipulation of matter waves in Talbot interferometry.
In this work, near-field diffraction of protons by a nanostructured metallic grating under the influence of (a) uniform, (b) spatially modulated, and (c) temporally modulated electric fields are investigated.
arXiv Detail & Related papers (2023-04-20T17:38:21Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Single-photon scattering on a qubit. Space-time structure of the
scattered field [0.0]
We study the space-time structure of the scattered field induced by the scattering of a narrow single-photon Gaussian pulse on a qubit embedded in 1D open waveguide.
For a weak excitation power we obtain explicit analytical expressions for space and time dependence of reflected and transmitted fields.
arXiv Detail & Related papers (2022-04-30T06:21:50Z) - Diffraction of strongly interacting molecular Bose-Einstein condensate
from standing wave light pulses [3.7650630333237194]
We study the effects of strong inter-particle interaction on diffraction of a Bose-Einstein condensate of $6Li$ molecules created by pulses of a standing wave.
For short pulses we observe the standard Kapitza-Dirac diffraction, with the contrast of the diffraction pattern strongly reduced for very large interactions.
For longer pulses diffraction shows the characteristic for matter waves impinging on an array of tubes and coherent channeling transport.
arXiv Detail & Related papers (2022-01-05T14:01:08Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.