論文の概要: EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
- arxiv url: http://arxiv.org/abs/2404.19489v1
- Date: Tue, 30 Apr 2024 12:18:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:25:13.198077
- Title: EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
- Title(参考訳): EvGNN:エッジビジョンのためのイベント駆動型グラフニューラルネットワークアクセラレータ
- Authors: Yufeng Yang, Adrian Kneip, Charlotte Frenkel,
- Abstract要約: イベント駆動グラフニューラルネットワーク(GNN)は、スパースイベントベースのビジョンのための有望なソリューションとして登場した。
我々は,低フットプリント,超低レイテンシ,高精度エッジビジョンのための,最初のイベント駆動型GNNアクセラレータであるEvGNNを提案する。
- 参考スコア(独自算出の注目度): 0.06752396542927405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge vision systems combining sensing and embedded processing promise low-latency, decentralized, and energy-efficient solutions that forgo reliance on the cloud. As opposed to conventional frame-based vision sensors, event-based cameras deliver a microsecond-scale temporal resolution with sparse information encoding, thereby outlining new opportunities for edge vision systems. However, mainstream algorithms for frame-based vision, which mostly rely on convolutional neural networks (CNNs), can hardly exploit the advantages of event-based vision as they are typically optimized for dense matrix-vector multiplications. While event-driven graph neural networks (GNNs) have recently emerged as a promising solution for sparse event-based vision, their irregular structure is a challenge that currently hinders the design of efficient hardware accelerators. In this paper, we propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision with event-based cameras. It relies on three central ideas: (i) directed dynamic graphs exploiting single-hop nodes with edge-free storage, (ii) event queues for the efficient identification of local neighbors within a spatiotemporally decoupled search range, and (iii) a novel layer-parallel processing scheme enabling the low-latency execution of multi-layer GNNs. We deployed EvGNN on a Xilinx KV260 Ultrascale+ MPSoC platform and benchmarked it on the N-CARS dataset for car recognition, demonstrating a classification accuracy of 87.8% and an average latency per event of 16$\mu$s, thereby enabling real-time, microsecond-resolution event-based vision at the edge.
- Abstract(参考訳): センサーと組込み処理を組み合わせたエッジビジョンシステムは、クラウドに依存しない低レイテンシ、分散化、エネルギー効率のソリューションを約束する。
従来のフレームベースの視覚センサとは対照的に、イベントベースのカメラは、情報符号化の少ないマイクロ秒スケールの時間分解能を提供し、エッジビジョンシステムにおける新たな機会を概説する。
しかし、主に畳み込みニューラルネットワーク(CNN)に依存しているフレームベースのビジョンの主流のアルゴリズムは、一般的に密度の高い行列ベクトル乗法に最適化されているため、イベントベースのビジョンの利点をほとんど活用できない。
イベント駆動グラフニューラルネットワーク(GNN)は最近、スパースイベントベースのビジョンのための有望なソリューションとして登場したが、その不規則な構造は、現在、効率的なハードウェアアクセラレータの設計を妨げる課題である。
本稿では,イベントベースカメラを用いた低フットプリント,超低レイテンシ,高精度エッジビジョンのための,最初のイベント駆動型GNNアクセラレータであるEvGNNを提案する。
それは三つの中心的な考えに依存している。
(i)エッジフリーストレージを持つシングルホップノードを利用する動的グラフ。
二 時空間分離探索範囲内の近隣住民の効率的な識別のためのイベントキュー及び
3)多層GNNの低レイテンシ実行を可能にする新しい層並列処理方式。
我々は,Xilinx KV260 Ultrascale+ MPSoCプラットフォーム上にEvGNNをデプロイし,認識のためのN-CARSデータセット上でベンチマークを行った。
関連論文リスト
- Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs [0.815557531820863]
イベントカメラは、組み込みリアルタイムシステムへの統合に大きな関連性を見出す。
イベント処理システムに必要なスループットとレイテンシを保証する効果的なアプローチの1つは、グラフ畳み込みネットワーク(GCN)の利用である。
我々は,ポイントクラウド処理用に設計されたGCNアーキテクチャであるPointNet++用に最適化された,ハードウェア対応の一連の最適化を紹介した。
論文 参考訳(メタデータ) (2024-06-11T14:47:36Z) - Co-designing a Sub-millisecond Latency Event-based Eye Tracking System with Submanifold Sparse CNN [8.613703056677457]
アイトラッキング技術は多くの消費者向けエレクトロニクスアプリケーション、特に仮想現実および拡張現実(VR/AR)において不可欠である
しかし、これらすべての面で最適なパフォーマンスを達成することは、非常に難しい課題である。
我々は,この課題に,システムとイベントカメラを併用したシナジスティックなソフトウェア/ハードウェアの共同設計を通じて対処する。
本システムでは,81%のp5精度,99.5%のp10精度,および3.71のMeanean Distanceを0.7msのレイテンシで実現し,1推論あたり2.29mJしか消費しない。
論文 参考訳(メタデータ) (2024-04-22T15:28:42Z) - Ev-Edge: Efficient Execution of Event-based Vision Algorithms on Commodity Edge Platforms [10.104371980353973]
Ev-Edgeは、エッジプラットフォーム上でのイベントベースのビジョンシステムのパフォーマンスを高めるために、3つの重要な最適化を含むフレームワークである。
様々な自律ナビゲーションタスクのための最先端ネットワークでは、Ev-Edgeはレイテンシが1.28x-2.05x改善され、エネルギーが1.23x-2.15xになった。
論文 参考訳(メタデータ) (2024-03-23T04:44:55Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
スパイキングニューラルネットワーク(SNN)は、本質的にイベントベースのデータと整合した時間的表現を提供する。
自動車のイベントベース物体検出に最適化された特化スパイキング特徴ピラミッドネットワーク(SpikeFPN)を提案する。
論文 参考訳(メタデータ) (2023-07-24T15:47:21Z) - HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously
Exploiting Image and Event Modalities [6.543272301133159]
イベントカメラは、非同期イベントストリームを生成するためにピクセルごとの強度の変化を検出する。
リアルタイム自律システムにおいて、正確なセマンティックマップ検索のための大きな可能性を秘めている。
イベントセグメンテーションの既存の実装は、サブベースのパフォーマンスに悩まされている。
本研究では,ハイブリット・エンド・エンド・エンドの学習フレームワークHALSIEを提案する。
論文 参考訳(メタデータ) (2022-11-19T17:09:50Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
イベントベースのグラフニューラルネットワークは、標準のGNNを一般化して、イベントを"進化的"時間グラフとして処理する。
AEGNNは同期入力で容易に訓練でき、テスト時に効率的な「非同期」ネットワークに変換できる。
論文 参考訳(メタデータ) (2022-03-31T16:21:12Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。