Inexact subgradient methods for semialgebraic functions
- URL: http://arxiv.org/abs/2404.19517v1
- Date: Tue, 30 Apr 2024 12:47:42 GMT
- Title: Inexact subgradient methods for semialgebraic functions
- Authors: Jérôme Bolte, Tam Le, Éric Moulines, Edouard Pauwels,
- Abstract summary: Motivated by the widespread use of approximate derivatives in machine learning and machine learning optimization, we inexact subient methods with non-vanishing errors.
- Score: 18.293072574300798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the widespread use of approximate derivatives in machine learning and optimization, we study inexact subgradient methods with non-vanishing additive errors and step sizes. In the nonconvex semialgebraic setting, under boundedness assumptions, we prove that the method provides points that eventually fluctuate close to the critical set at a distance proportional to $\epsilon^\rho$ where $\epsilon$ is the error in subgradient evaluation and $\rho$ relates to the geometry of the problem. In the convex setting, we provide complexity results for the averaged values. We also obtain byproducts of independent interest, such as descent-like lemmas for nonsmooth nonconvex problems and some results on the limit of affine interpolants of differential inclusions.
Related papers
- Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization [2.0657831823662574]
When the non problem is by which the non problem is by whichity, the sample of first-order methods may depend linearly on the problem dimension, is for undesirable problems.
Our algorithms allow for the estimate of complexity using the distance of.
mathO (log d) / EuM4.
We prove that DISFOM can sharpen variance employing $mathO (log d) / EuM4.
arXiv Detail & Related papers (2024-06-27T18:38:42Z) - A Unified Analysis on the Subgradient Upper Bounds for the Subgradient Methods Minimizing Composite Nonconvex, Nonsmooth and Non-Lipschitz Functions [7.972544890243396]
This paper presents a unified analysis for the proximal subgradient method (Prox-SubGrad) type approach.
We are able to relate error-bound conditions, the growth conditions of the subgradients of the objective, and the behavior of the proximal subgradient iterates on some remarkably broad classes of objective functions.
arXiv Detail & Related papers (2023-08-30T23:34:11Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Decentralized Weakly Convex Optimization Over the Stiefel Manifold [28.427697270742947]
We focus on the Stiefel manifold in the decentralized setting, where a connected network of agents in $nMn log-1)$ are tested.
We propose an method called the decentralized subgradient method (DRSM)$ for forcing a natural station below $nMn log-1)$.
arXiv Detail & Related papers (2023-03-31T02:56:23Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Randomized Coordinate Subgradient Method for Nonsmooth Composite
Optimization [11.017632675093628]
Coordinate-type subgradient methods for addressing nonsmooth problems are relatively underexplored due to the set of properties of the Lipschitz-type assumption.
arXiv Detail & Related papers (2022-06-30T02:17:11Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.