論文の概要: Generating Robust Counterfactual Witnesses for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2404.19519v1
- Date: Tue, 30 Apr 2024 12:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:15:27.623177
- Title: Generating Robust Counterfactual Witnesses for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのためのロバストな対実的ウィットネスの生成
- Authors: Dazhuo Qiu, Mengying Wang, Arijit Khan, Yinghui Wu,
- Abstract要約: 本稿では,ロバストな反事実証人 (RCW) と呼ばれる新しい説明構造を紹介する。
RCWはグラフニューラルネットワークに対して、事実と事実の両方の堅牢な説明を提供する。
ベンチマークデータセットの説明生成過程を実験的に検証し,その応用例を示す。
- 参考スコア(独自算出の注目度): 11.94704946217844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a new class of explanation structures, called robust counterfactual witnesses (RCWs), to provide robust, both counterfactual and factual explanations for graph neural networks. Given a graph neural network M, a robust counterfactual witness refers to the fraction of a graph G that are counterfactual and factual explanation of the results of M over G, but also remains so for any "disturbed" G by flipping up to k of its node pairs. We establish the hardness results, from tractable results to co-NP-hardness, for verifying and generating robust counterfactual witnesses. We study such structures for GNN-based node classification, and present efficient algorithms to verify and generate RCWs. We also provide a parallel algorithm to verify and generate RCWs for large graphs with scalability guarantees. We experimentally verify our explanation generation process for benchmark datasets, and showcase their applications.
- Abstract(参考訳): 本稿では,グラフニューラルネットワークに対して,ロバスト・ファクト・ファクト・インジケータ(RCW)と呼ばれる新たな説明構造を導入し,ロバスト・ファクト・ファクト・インジケータとファクト・インジケータを両立させる。
グラフニューラルネットワーク M が与えられたとき、頑健な反実的証人はグラフ G の分数を指し、これは M の G 上の結果の反実的かつ事実的な説明であるが、ノード対の k までをひっくり返すことによって、任意の「歪んだ」 G に対しても依然としてそのように残っている。
我々は,頑健な反事実証人を検証・生成するために,抽出可能な結果から共NP硬度まで,難易度結果を確立する。
GNNに基づくノード分類のためのそのような構造について検討し、RCWを検証・生成するための効率的なアルゴリズムを提案する。
また,拡張性を保証する大規模グラフに対するRCWの検証と生成を行う並列アルゴリズムも提供する。
ベンチマークデータセットの説明生成過程を実験的に検証し,その応用例を示す。
関連論文リスト
- Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングでますます人気が高まっている。
本稿では,構造変化が発生した場合,GNNの性能が著しく低下することが実験的に確認された。
本稿では,GNNの不変表現を学習するクラスタ情報伝達(CIT)機構を提案する。
論文 参考訳(メタデータ) (2024-03-06T10:36:56Z) - Robust Node Representation Learning via Graph Variational Diffusion
Networks [7.335425547621226]
近年,グラフ構造における摂動により,GNNに基づくノード表現学習が著しく劣化する可能性が示唆されている。
摂動の存在下で頑健なノード表現を学習するために、GNNを保護するための様々な研究が提案されている。
本稿では,ガウス雑音を効果的に制御し,摂動グラフ上のロバスト性を保護する新しいノードエンコーダであるグラフ変分拡散ネットワーク(GVDN)を提案する。
論文 参考訳(メタデータ) (2023-12-18T03:18:53Z) - ACGAN-GNNExplainer: Auxiliary Conditional Generative Explainer for Graph
Neural Networks [7.077341403454516]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで有効であることが証明されているが、その基盤となるメカニズムは謎のままである。
この課題に対処し、信頼性の高い意思決定を可能にするため、近年多くのGNN説明者が提案されている。
本稿では、GNN説明分野にAuxiliary Generative Adrative Network (ACGAN)を導入し、emphACGANGNNExplainerと呼ばれる新しいGNN説明器を提案する。
論文 参考訳(メタデータ) (2023-09-29T01:20:28Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer [29.217820912610602]
グラフトランスフォーマー(GT)は、グラフ全体にわたってもメッセージパッシングがより広範なカバレッジに伝達できるパラダイムで機能する。
ヘテロジニアス情報ネットワーク(HIN)におけるGTの探索はまだ未公開である。
本稿では,ノード表現学習のための大域集約機構を利用するHINormerという新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-02-22T12:25:07Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。