Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference
- URL: http://arxiv.org/abs/2404.19620v1
- Date: Tue, 30 Apr 2024 15:20:41 GMT
- Title: Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference
- Authors: Haoxuan Li, Chunyuan Zheng, Sihao Ding, Peng Wu, Zhi Geng, Fuli Feng, Xiangnan He,
- Abstract summary: Previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model.
This paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference.
We propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect.
- Score: 50.95521705711802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selection bias in recommender system arises from the recommendation process of system filtering and the interactive process of user selection. Many previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model, but ignore the fact that potential outcomes for a given user-item pair may vary with the treatments assigned to other user-item pairs, named neighborhood effect. To fill the gap, this paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference and introduces a treatment representation to capture the neighborhood effect. On this basis, we propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect. We further develop two new estimators for estimating the proposed ideal loss. We theoretically establish the connection between the proposed and previous debiasing methods ignoring the neighborhood effect, showing that the proposed methods can achieve unbiased learning when both selection bias and neighborhood effect are present, while the existing methods are biased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed methods.
Related papers
- Inference-Time Selective Debiasing [27.578390085427156]
We propose selective debiasing -- an inference-time safety mechanism that aims to increase the overall quality of models.
We identify the potentially biased model predictions and, instead of discarding them, we debias them using LEACE -- a post-processing debiasing method.
Experiments with text classification datasets demonstrate that selective debiasing helps to close the performance gap between post-processing methods and at-training and pre-processing debiasing techniques.
arXiv Detail & Related papers (2024-07-27T21:56:23Z) - Debiased Recommendation with Noisy Feedback [41.38490962524047]
We study intersectional threats to the unbiased learning of the prediction model from data MNAR and OME in the collected data.
First, we design OME-EIB, OME-IPS, and OME-DR estimators, which largely extend the existing estimators to combat OME in real-world recommendation scenarios.
arXiv Detail & Related papers (2024-06-24T23:42:18Z) - Causal Distillation for Alleviating Performance Heterogeneity in Recommender Systems [142.3424649008479]
We show the uneven distribution of historical interactions and the biased training of recommender models.
The key to debiased training lies in eliminating the effect of confounders that influence both the user's historical behaviors and the next behavior.
We propose a causal multi-teacher distillation framework (CausalD) to address unobserved confounders.
arXiv Detail & Related papers (2024-05-31T05:31:00Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
We study the effect of selection bias in preference elicitation on the resulting recommendations.
A big hurdle is the lack of any publicly available dataset that has preference elicitation interactions.
We propose a simulation of a topic-based preference elicitation process.
arXiv Detail & Related papers (2024-05-01T14:56:56Z) - Debiased Model-based Interactive Recommendation [22.007617148466807]
We develop a model called textbfidentifiable textbfDebiased textbfModel-based textbfInteractive textbfRecommendation (textbfiDMIR in short)
For the first drawback, we devise a debiased causal world model based on the causal mechanism of the time-varying recommendation generation process with identification guarantees.
For the second drawback, we devise a debiased contrastive policy, which coincides with the debiased contrastive learning and avoids sampling bias
arXiv Detail & Related papers (2024-02-24T14:10:04Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
Learning from implicit feedback is one of the most common cases in the application of recommender systems.
We propose probabilistic and variational recommendation denoising for implicit feedback.
We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets.
arXiv Detail & Related papers (2021-05-20T08:59:44Z) - Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental
Design Approach [27.975266406080152]
In this paper, we design a suite of unsupervised classification methods based on experimental design approaches.
We aim to select the subsets of events which minimize different measures of mean estimation error.
Our experiments range from validating prediction performance on unsanitized and sanitized events to checking the effect of selecting optimal subsets of various sizes.
arXiv Detail & Related papers (2021-02-11T11:38:15Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.