論文の概要: ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents
- arxiv url: http://arxiv.org/abs/2404.19714v1
- Date: Tue, 30 Apr 2024 17:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:26:28.675701
- Title: ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents
- Title(参考訳): ThangDLU at #SMM4H 2024: Encoder-decoder model for Classification of text data on social disorders in children and Adolescents
- Authors: Hoang-Thang Ta, Abu Bakar Siddiqur Rahman, Lotfollah Najjar, Alexander Gelbukh,
- Abstract要約: 本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
- 参考スコア(独自算出の注目度): 49.00494558898933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes our participation in Task 3 and Task 5 of the #SMM4H (Social Media Mining for Health) 2024 Workshop, explicitly targeting the classification challenges within tweet data. Task 3 is a multi-class classification task centered on tweets discussing the impact of outdoor environments on symptoms of social anxiety. Task 5 involves a binary classification task focusing on tweets reporting medical disorders in children. We applied transfer learning from pre-trained encoder-decoder models such as BART-base and T5-small to identify the labels of a set of given tweets. We also presented some data augmentation methods to see their impact on the model performance. Finally, the systems obtained the best F1 score of 0.627 in Task 3 and the best F1 score of 0.841 in Task 5.
- Abstract(参考訳): 本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
また、モデルの性能への影響を確認するために、いくつかのデータ拡張手法も提示した。
最後に、このシステムは第3タスクで0.627のF1スコア、第5タスクで0.841のF1スコアを得た。
関連論文リスト
- Text Augmentations with R-drop for Classification of Tweets Self
Reporting Covid-19 [28.91836510067532]
本稿では,ソーシャル・メディア・マイニング・フォー・ヘルス2023共有タスクのためのモデルを提案する。
我々のアプローチは、多種多様なテキスト拡張を取り入れた分類モデルである。
テストセットのF1スコアは0.877である。
論文 参考訳(メタデータ) (2023-11-06T14:18:16Z) - Exploring Meta Information for Audio-based Zero-shot Bird Classification [113.17261694996051]
本研究では,メタ情報を用いてゼロショット音声分類を改善する方法について検討する。
我々は,多種多様なメタデータが利用可能であることから,鳥種を例として用いている。
論文 参考訳(メタデータ) (2023-09-15T13:50:16Z) - Supervised Learning and Large Language Model Benchmarks on Mental Health Datasets: Cognitive Distortions and Suicidal Risks in Chinese Social Media [23.49883142003182]
中国のソーシャルメディアから,自殺リスク分類のためのSOS-HL-1Kと,認知歪み検出のためのSocialCD-3Kの2つの新しいデータセットを紹介した。
本稿では,2つの教師付き学習手法と8つの大規模言語モデル(LLM)を用いた総合的な評価を提案する。
論文 参考訳(メタデータ) (2023-09-07T08:50:46Z) - Incorporating Emotions into Health Mention Classification Task on Social
Media [70.23889100356091]
情緒的特徴を取り入れた健康言及分類のための枠組みを提案する。
我々は,ソーシャルメディアプラットフォームによる5つのHMC関連データセットに対するアプローチを評価した。
以上の結果から,感情的な知識を取り入れたHMCモデルが有効な選択肢であることが示唆された。
論文 参考訳(メタデータ) (2022-12-09T18:38:41Z) - Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2020 [62.6928395368204]
タスクはバイナリ分類タスクとして設定され、ゴールはリアルニュースとフェイクニュースを区別することである。
トレーニング用に900の注釈付きニュース記事とテスト用に400のニュース記事のデータセットを作成した。
6カ国(インド、中国、エジプト、ドイツ、パキスタン、イギリス)の42チームが登録された。
論文 参考訳(メタデータ) (2022-07-25T03:41:32Z) - Overview of Abusive and Threatening Language Detection in Urdu at FIRE
2021 [50.591267188664666]
我々は、ウルドゥー語に対する虐待と脅しの2つの共通タスクを提示する。
本研究では, (i) 乱用と非乱用というラベル付きツイートを含む手動注釈付きデータセットと, (ii) 脅威と非脅威の2つを提示する。
両方のサブタスクに対して、m-Bertベースのトランスモデルは最高の性能を示した。
論文 参考訳(メタデータ) (2022-07-14T07:38:13Z) - Automatic Extraction of Medication Names in Tweets as Named Entity
Recognition [3.7462395049372894]
バイオクリエイティヴVIIタスク3は、ツイート中の医薬品や栄養補助薬の言及を認識することで、この情報をマイニングすることに焦点を当てている。
トークンレベルの分類を行うために,複数のBERTスタイルの言語モデルを微調整することで,この問題に対処する。
我々の最良のシステムは、5つのメガトロン-BERT-345Mモデルで構成され、未知のテストデータに対して厳密なF1スコア0.764を達成する。
論文 参考訳(メタデータ) (2021-11-30T18:25:32Z) - A PubMedBERT-based Classifier with Data Augmentation Strategy for
Detecting Medication Mentions in Tweets [2.539568419434224]
Twitterは毎日大量のユーザー生成テキスト(ツイート)を公開している。
エンティティ認識(NER)は、ツイートデータにいくつかの特別な課題を提示します。
本稿では,複数のデータ拡張手法を組み合わせたPubMedBERTベースの分類器について検討する。
提案手法はF1スコアが0.762であり, 平均値よりもかなり高い値を示した。
論文 参考訳(メタデータ) (2021-11-03T14:29:24Z) - Fake News Detection in Social Media using Graph Neural Networks and NLP
Techniques: A COVID-19 Use-case [2.4937400423177767]
本稿では,MediaEval 2020タスク,すなわちFakeNews: Corona Virusと5G Conspiracy Multimedia Twitter-Data-Based Analysisのソリューションについて述べる。
論文 参考訳(メタデータ) (2020-11-30T16:41:04Z) - Device-Robust Acoustic Scene Classification Based on Two-Stage
Categorization and Data Augmentation [63.98724740606457]
我々は,GT,USTC,Tencent,UKEの4つのグループからなる共同で,DCASE 2020 Challengeの第1タスク - 音響シーン分類(ASC)に取り組む。
タスク1aは、複数の(実とシミュレートされた)デバイスで記録されたオーディオ信号のASCを10種類の微細なクラスにフォーカスする。
Task 1bは、低複雑さのソリューションを使用して、データを3つの上位クラスに分類することに関心がある。
論文 参考訳(メタデータ) (2020-07-16T15:07:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。