論文の概要: Assessing LLMs in Malicious Code Deobfuscation of Real-world Malware Campaigns
- arxiv url: http://arxiv.org/abs/2404.19715v1
- Date: Tue, 30 Apr 2024 17:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:26:28.673090
- Title: Assessing LLMs in Malicious Code Deobfuscation of Real-world Malware Campaigns
- Title(参考訳): 実世界のマルウェアキャンペーンにおける悪意あるコードの難読化におけるLCMの評価
- Authors: Constantinos Patsakis, Fran Casino, Nikolaos Lykousas,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の難読化機能について検討する。
我々は,悪名高いEmotetマルウェアキャンペーンで使用されている現実の悪意のあるスクリプトを用いた4つのLSMを評価した。
以上の結果から,まだ完全には正確ではないものの,これらのペイロードを効率よく除去できるLCMが存在することが示唆された。
- 参考スコア(独自算出の注目度): 7.776434991976473
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The integration of large language models (LLMs) into various pipelines is increasingly widespread, effectively automating many manual tasks and often surpassing human capabilities. Cybersecurity researchers and practitioners have recognised this potential. Thus, they are actively exploring its applications, given the vast volume of heterogeneous data that requires processing to identify anomalies, potential bypasses, attacks, and fraudulent incidents. On top of this, LLMs' advanced capabilities in generating functional code, comprehending code context, and summarising its operations can also be leveraged for reverse engineering and malware deobfuscation. To this end, we delve into the deobfuscation capabilities of state-of-the-art LLMs. Beyond merely discussing a hypothetical scenario, we evaluate four LLMs with real-world malicious scripts used in the notorious Emotet malware campaign. Our results indicate that while not absolutely accurate yet, some LLMs can efficiently deobfuscate such payloads. Thus, fine-tuning LLMs for this task can be a viable potential for future AI-powered threat intelligence pipelines in the fight against obfuscated malware.
- Abstract(参考訳): 大規模言語モデル(LLM)の様々なパイプラインへの統合はますます広まり、多くの手動タスクを効果的に自動化し、しばしば人間の能力を超えている。
サイバーセキュリティ研究者や専門家は、この可能性を認識している。
そのため彼らは、異常、潜在的なバイパス、攻撃、不正なインシデントを識別するために処理を必要とする膨大な量の異種データを考慮し、その応用を積極的に検討している。
これに加えて、機能コードの生成、コードコンテキストの理解、操作の要約といったLLMの高度な機能は、リバースエンジニアリングやマルウェアの難読化にも活用できる。
この目的のために、我々は最先端のLLMの難読化能力を探究する。
仮説的なシナリオを議論するだけでなく、悪名高いEmotetマルウェアキャンペーンで使われた現実の悪意のあるスクリプトで4つのLSMを評価する。
以上の結果から,まだ完全には正確ではないものの,これらのペイロードを効率よく除去できるLCMが存在することが示唆された。
したがって、このタスクの微調整 LLM は、難解なマルウェアとの戦いにおいて、将来のAIによる脅威インテリジェンスパイプラインの可能性を秘めている。
関連論文リスト
- Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
我々は、状況駆動型文脈書き換えにより、無意味な接尾辞攻撃を意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - Synthetic Cancer -- Augmenting Worms with LLMs [0.0]
大規模言語モデル(LLM)を2つの重要なプロセスに応用した,新しいタイプのメタモルフィックマルウェアを提案する。
第一に、LSMは、アンチマルウェアプログラムによるシグネチャベースの検出を避けるために、自動コード書き換えに使用される。
マルウェアはLLMを利用して電子メールの返信をソーシャルにエンジニアリングし、受信者にマルウェアの実行を促す。
論文 参考訳(メタデータ) (2024-06-27T23:15:45Z) - Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models [0.0]
Mallasは、大きな言語モデル(LLM)を悪用する悪意のあるサービスである。
本稿では,様々な事前学習言語モデルとその効率と脆弱性を検証し,Mallasの増殖について考察する。
論文 参考訳(メタデータ) (2024-06-02T06:10:31Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
大規模言語モデル(LLM)に対する敵対的攻撃は、有害なステートメントを作るためにモデルを「ジェイルブレイク」することができることが示されている。
LLMに対する敵対的攻撃のスペクトルは単なるジェイルブレイクよりもはるかに大きいと我々は主張する。
論文 参考訳(メタデータ) (2024-02-21T18:59:13Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
MLLM(Multimodal Large Language Models)は、AGI(Artificial General Intelligence)の新たな境界を常に定義している。
本稿では,MLLM社会において,悪意のあるコンテンツの間接的伝播という新たな脆弱性について検討する。
論文 参考訳(メタデータ) (2024-02-20T23:08:21Z) - DeceptPrompt: Exploiting LLM-driven Code Generation via Adversarial
Natural Language Instructions [27.489622263456983]
DeceptPromptは、コードLLMを駆動し、脆弱性のある機能の正しいコードを生成する、逆の自然言語命令を生成するアルゴリズムである。
最適化プレフィックス/サフィックスを適用する場合、アタック成功率(ASR)はプレフィックス/サフィックスを適用せずに平均50%向上する。
論文 参考訳(メタデータ) (2023-12-07T22:19:06Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
大規模言語モデル(LLM)は、自然言語の理解と生成に革命をもたらした。
本稿では,LLMとセキュリティとプライバシの交わりについて考察する。
論文 参考訳(メタデータ) (2023-12-04T16:25:18Z) - The Philosopher's Stone: Trojaning Plugins of Large Language Models [22.67696768099352]
オープンソースのLarge Language Models (LLM) は、プロプライエタリなLLMに匹敵するパフォーマンスのため、最近人気を集めている。
ドメイン特化タスクを効率的にこなすために、低ランクアダプタを用いて高価なアクセラレーターを使わずにオープンソースのLLMを洗練することができる。
LLMを制御するために低ランクアダプタを利用できるかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-12-01T06:36:17Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard
Security Attacks [67.86285142381644]
命令追従型大規模言語モデルの最近の進歩は、悪意のある目的のために二重使用リスクを増幅する。
命令追従機能がコンピュータセキュリティの標準的な攻撃を可能にするため、デュアルユースを防ぐのは難しい。
本研究では,LLMがヘイトスピーチや詐欺などの悪意のあるコンテンツをターゲットにすることができることを示す。
論文 参考訳(メタデータ) (2023-02-11T15:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。