Lightplane: Highly-Scalable Components for Neural 3D Fields
- URL: http://arxiv.org/abs/2404.19760v1
- Date: Tue, 30 Apr 2024 17:59:51 GMT
- Title: Lightplane: Highly-Scalable Components for Neural 3D Fields
- Authors: Ang Cao, Justin Johnson, Andrea Vedaldi, David Novotny,
- Abstract summary: Lightplane Render and Splatter significantly reduce memory usage in 2D-3D mapping.
These innovations enable the processing of vastly more and higher resolution images with small memory and computational costs.
- Score: 54.59244949629677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary 3D research, particularly in reconstruction and generation, heavily relies on 2D images for inputs or supervision. However, current designs for these 2D-3D mapping are memory-intensive, posing a significant bottleneck for existing methods and hindering new applications. In response, we propose a pair of highly scalable components for 3D neural fields: Lightplane Render and Splatter, which significantly reduce memory usage in 2D-3D mapping. These innovations enable the processing of vastly more and higher resolution images with small memory and computational costs. We demonstrate their utility in various applications, from benefiting single-scene optimization with image-level losses to realizing a versatile pipeline for dramatically scaling 3D reconstruction and generation. Code: \url{https://github.com/facebookresearch/lightplane}.
Related papers
- SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
We propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection.
Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators.
Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts.
arXiv Detail & Related papers (2024-04-05T17:59:25Z) - IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality
3D Generation [96.32684334038278]
In this paper, we explore the design space of text-to-3D models.
We significantly improve multi-view generation by considering video instead of image generators.
Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100x.
arXiv Detail & Related papers (2024-02-13T18:59:51Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries.
Yet, the significant memory and computational costs of dense sampling in volume rendering have forced 3D GANs to adopt patch-based training or employ low-resolution rendering with post-processing 2D super resolution.
We propose techniques to scale neural volume rendering to the much higher resolution of native 2D images, thereby resolving fine-grained 3D geometry with unprecedented detail.
arXiv Detail & Related papers (2024-01-04T18:50:38Z) - Neural 3D Scene Reconstruction from Multiple 2D Images without 3D
Supervision [41.20504333318276]
We propose a novel neural reconstruction method that reconstructs scenes using sparse depth under the plane constraints without 3D supervision.
We introduce a signed distance function field, a color field, and a probability field to represent a scene.
We optimize these fields to reconstruct the scene by using differentiable ray marching with accessible 2D images as supervision.
arXiv Detail & Related papers (2023-06-30T13:30:48Z) - Lightweight integration of 3D features to improve 2D image segmentation [1.3799488979862027]
We show that image segmentation can benefit from 3D geometric information without requiring a 3D groundtruth.
Our method can be applied to many 2D segmentation networks, improving significantly their performance.
arXiv Detail & Related papers (2022-12-16T08:22:55Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - SimpleRecon: 3D Reconstruction Without 3D Convolutions [21.952478592241]
We show how focusing on high quality multi-view depth prediction leads to highly accurate 3D reconstructions using simple off-the-shelf depth fusion.
Our method achieves a significant lead over the current state-of-the-art for depth estimation and close or better for 3D reconstruction on ScanNet and 7-Scenes.
arXiv Detail & Related papers (2022-08-31T09:46:34Z) - GRAM-HD: 3D-Consistent Image Generation at High Resolution with
Generative Radiance Manifolds [28.660893916203747]
This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering.
Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency.
Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results.
arXiv Detail & Related papers (2022-06-15T02:35:51Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.