BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging, Stacking and Hierarchical Stacking in Python
- URL: http://arxiv.org/abs/2405.00158v1
- Date: Tue, 30 Apr 2024 19:15:33 GMT
- Title: BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging, Stacking and Hierarchical Stacking in Python
- Authors: Nathaniel Haines, Conor Goold,
- Abstract summary: We introduce the BayesBlend Python package to estimate weights and blend multiple (Bayesian) models' predictive distributions.
BayesBlend implements pseudo-Bayesian model averaging, stacking and, uniquely, hierarchical Bayesian stacking to estimate model weights.
We demonstrate the usage of BayesBlend with examples of insurance loss modeling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Averaging predictions from multiple competing inferential models frequently outperforms predictions from any single model, providing that models are optimally weighted to maximize predictive performance. This is particularly the case in so-called $\mathcal{M}$-open settings where the true model is not in the set of candidate models, and may be neither mathematically reifiable nor known precisely. This practice of model averaging has a rich history in statistics and machine learning, and there are currently a number of methods to estimate the weights for constructing model-averaged predictive distributions. Nonetheless, there are few existing software packages that can estimate model weights from the full variety of methods available, and none that blend model predictions into a coherent predictive distribution according to the estimated weights. In this paper, we introduce the BayesBlend Python package, which provides a user-friendly programming interface to estimate weights and blend multiple (Bayesian) models' predictive distributions. BayesBlend implements pseudo-Bayesian model averaging, stacking and, uniquely, hierarchical Bayesian stacking to estimate model weights. We demonstrate the usage of BayesBlend with examples of insurance loss modeling.
Related papers
- Accelerating Ensemble Error Bar Prediction with Single Models Fits [0.5249805590164902]
An ensemble of N models is approximately N times more computationally demanding compared to a single model when it is used for inference.
In this work, we explore fitting a single model to predicted ensemble error bar data, which allows us to estimate uncertainties without the need for a full ensemble.
arXiv Detail & Related papers (2024-04-15T16:10:27Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Local Bayesian Dirichlet mixing of imperfect models [0.0]
We study the ability of Bayesian model averaging and mixing techniques to mine nuclear masses.
We show that the global and local mixtures of models reach excellent performance on both prediction accuracy and uncertainty quantification.
arXiv Detail & Related papers (2023-11-02T21:02:40Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Locking and Quacking: Stacking Bayesian model predictions by log-pooling
and superposition [0.5735035463793007]
We present two novel tools for combining predictions from different models.
These are generalisations of model stacking, but combine posterior densities by log-linear pooling and quantum superposition.
To optimise model weights while avoiding the burden of normalising constants, we investigate the Hyvarinen score of the combined posterior predictions.
arXiv Detail & Related papers (2023-05-12T09:26:26Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Bayesian Regression Approach for Building and Stacking Predictive Models
in Time Series Analytics [0.0]
The paper describes the use of Bayesian regression for building time series models and stacking different predictive models for time series.
It makes it possible to estimate an uncertainty of time series prediction and calculate value at risk characteristics.
arXiv Detail & Related papers (2022-01-06T12:58:23Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.