Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks
- URL: http://arxiv.org/abs/2405.00166v1
- Date: Tue, 30 Apr 2024 19:31:31 GMT
- Title: Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks
- Authors: Imran Nasim, Adam Nasim,
- Abstract summary: We introduce PKINNs, a novel purely data-driven neural network model.
PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures.
The resulting models are both interpretable and explainable through Symbolic Regression methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pharmacometric models are pivotal across drug discovery and development, playing a decisive role in determining the progression of candidate molecules. However, the derivation of mathematical equations governing the system is a labor-intensive trial-and-error process, often constrained by tight timelines. In this study, we introduce PKINNs, a novel purely data-driven pharmacokinetic-informed neural network model. PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures, reliably forecasting their derivatives. The resulting models are both interpretable and explainable through Symbolic Regression methods. Our computational framework demonstrates the potential for closed-form model discovery in pharmacometric applications, addressing the labor-intensive nature of traditional model derivation. With the increasing availability of large datasets, this framework holds the potential to significantly enhance model-informed drug discovery.
Related papers
- CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics [1.7614751781649955]
We propose an innovative approach that enhances PK and integrated PK-PD modeling.
Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs)
Results demonstrate that this methodology offers a robust framework that markedly enhances the model's depiction of drug absorption rates and distributed delayed responses.
arXiv Detail & Related papers (2024-09-19T15:01:33Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
This work introduces several new generative adversarial network models based on engineering integration of parametrized quantum circuits into known molecular generative adversarial networks.
The introduced machine learning models incorporate a new multi- parameter reward function grounded in reinforcement learning principles.
arXiv Detail & Related papers (2023-12-28T14:10:26Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.