CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics
- URL: http://arxiv.org/abs/2409.12998v1
- Date: Thu, 19 Sep 2024 15:01:33 GMT
- Title: CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics
- Authors: Nazanin Ahmadi Daryakenari, Shupeng Wang, George Karniadakis,
- Abstract summary: We propose an innovative approach that enhances PK and integrated PK-PD modeling.
Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs)
Results demonstrate that this methodology offers a robust framework that markedly enhances the model's depiction of drug absorption rates and distributed delayed responses.
- Score: 1.7614751781649955
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of pharmacokinetics and pharmacodynamics (PKPD) modeling, which plays a pivotal role in the drug development process, traditional models frequently encounter difficulties in fully encapsulating the complexities of drug absorption, distribution, and their impact on targets. Although multi-compartment models are frequently utilized to elucidate intricate drug dynamics, they can also be overly complex. To generalize modeling while maintaining simplicity, we propose an innovative approach that enhances PK and integrated PK-PD modeling by incorporating fractional calculus or time-varying parameter(s), combined with constant or piecewise constant parameters. These approaches effectively model anomalous diffusion, thereby capturing drug trapping and escape rates in heterogeneous tissues, which is a prevalent phenomenon in drug dynamics. Furthermore, this method provides insight into the dynamics of drug in cancer in multi-dose administrations. Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs), integrating ordinary differential equations (ODEs) with integer/fractional derivative order from compartmental modeling with neural networks. This integration optimizes parameter estimation for variables that are time-variant, constant, piecewise constant, or related to the fractional derivative order. The results demonstrate that this methodology offers a robust framework that not only markedly enhances the model's depiction of drug absorption rates and distributed delayed responses but also unlocks different drug-effect dynamics, providing new insights into absorption rates, anomalous diffusion, drug resistance, peristance and pharmacokinetic tolerance, all within a system of just two (fractional) ODEs with explainable results.
Related papers
- HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment [0.46435896353765527]
We introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks ( SBINNs)
The proposed method, Hyper SBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials.
arXiv Detail & Related papers (2024-08-26T13:40:33Z) - Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging [4.097001355074171]
This study introduces an innovative data-driven neural network-based framework, inspired by Reaction Diffusion systems.
Our approach, which adaptively fits TACs from dPET, enables the direct calibration of diffusion coefficients and reaction terms from observed data.
arXiv Detail & Related papers (2024-05-31T17:09:07Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
We introduce PKINNs, a novel purely data-driven neural network model.
PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures.
The resulting models are both interpretable and explainable through Symbolic Regression methods.
arXiv Detail & Related papers (2024-04-30T19:31:31Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Neural Ordinary Differential Equations for Intervention Modeling [30.127870899307254]
Real-world systems often involve external interventions that cause changes in the system dynamics.
Neural ODE and a number of its recent variants are not suitable for modeling such interventions as they do not properly model the observations and the interventions separately.
We propose a novel neural ODE-based approach (IMODE) that properly model the effect of external interventions by employing two ODE functions to separately handle the observations and the interventions.
arXiv Detail & Related papers (2020-10-16T10:55:12Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.