論文の概要: Synthetic Image Verification in the Era of Generative AI: What Works and What Isn't There Yet
- arxiv url: http://arxiv.org/abs/2405.00196v1
- Date: Tue, 30 Apr 2024 20:59:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:06:33.147559
- Title: Synthetic Image Verification in the Era of Generative AI: What Works and What Isn't There Yet
- Title(参考訳): 生成AIの時代における合成画像の検証:何が機能し、まだ存在しないのか
- Authors: Diangarti Tariang, Riccardo Corvi, Davide Cozzolino, Giovanni Poggi, Koki Nagano, Luisa Verdoliva,
- Abstract要約: 本稿では,合成画像の検出と帰属に関するアプローチの概要と,その強度と弱点を明らかにする。
また、この分野でのホットトピックを指摘し、議論し、今後の研究に向けた有望な方向性を概説する。
- 参考スコア(独自算出の注目度): 11.762538459032823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present an overview of approaches for the detection and attribution of synthetic images and highlight their strengths and weaknesses. We also point out and discuss hot topics in this field and outline promising directions for future research.
- Abstract(参考訳): 本稿では,合成画像の検出と帰属に関するアプローチの概要と,その強度と弱点を明らかにする。
また、この分野でのホットトピックを指摘し、議論し、今後の研究に向けた有望な方向性を概説する。
関連論文リスト
- Text-to-image Diffusion Models in Generative AI: A Survey [75.32882187215394]
本稿では,テキストコンディショニング画像合成における最先端手法,すなわちテキスト・トゥ・イメージについて概観する。
我々はテキスト・ツー・イメージ・ジェネレーションを超える応用について論じる:テキスト・ガイド・クリエイティブ・ジェネレーションとテキスト・ガイド・イメージ・編集。
論文 参考訳(メタデータ) (2023-03-14T13:49:54Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
最近のテキスト・ツー・イメージ生成モデルは、ターゲットのテキスト・プロンプトによって導かれる多様な創造的な画像を生成する非例外的な能力を実証している。
革命的ではあるが、現在の最先端拡散モデルは、与えられたテキストプロンプトのセマンティクスを完全に伝達するイメージの生成に失敗する可能性がある。
本研究では, 一般に公開されている安定拡散モデルを分析し, 破滅的無視の有無を評価し, そのモデルが入力プロンプトから1つ以上の被写体を生成するのに失敗した場合について検討する。
提案するジェネレーティブ・セマンティック・ナーシング(GSN)の概念は、推論時間中にハエの生殖過程に介入し、忠実性を改善するものである。
論文 参考訳(メタデータ) (2023-01-31T18:10:38Z) - Synthesizing Photorealistic Images with Deep Generative Learning [8.789457008123504]
この論文は5つの作品から構成されており、それぞれが可愛らしい内容の画像を合成する新しい学習ベースのアプローチと、視覚的に現実的な外観を示す。
各研究は、画像合成における提案手法の優位性を実証し、さらに深度推定などの他の課題に寄与する。
論文 参考訳(メタデータ) (2022-02-23T11:35:39Z) - Scene Graph Generation: A Comprehensive Survey [35.80909746226258]
シーングラフは、その強力な意味表現とシーン理解への応用から研究の焦点となっている。
SGG(Scene Graph Generation)とは、画像を自動的にセマンティックなシーングラフにマッピングするタスクである。
本稿では,異なる入力モダリティをカバーする138の代表的な作品についてレビューし,既存の画像ベースSGGの手法を体系的に要約する。
論文 参考訳(メタデータ) (2022-01-03T00:55:33Z) - From Show to Tell: A Survey on Image Captioning [48.98681267347662]
視覚と言語を結びつけることは、ジェネレーティブ・インテリジェンスにおいて重要な役割を担っている。
画像キャプションの研究はまだ結論に達していない。
本研究の目的は,画像キャプション手法の包括的概要と分類を提供することである。
論文 参考訳(メタデータ) (2021-07-14T18:00:54Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
本章では,画像感情分析(IEA)を計算的観点から導入することを目的としている。
心理学の一般的な感情表現モデルから始めます。
そして、研究者たちが解決しようとしている重要な計算問題を定義します。
論文 参考訳(メタデータ) (2021-03-19T13:33:34Z) - Adversarial Text-to-Image Synthesis: A Review [7.593633267653624]
我々は,5年前に始まった対人テキスト・画像合成モデルの状況,その発展を文脈的に把握し,その監督レベルに基づく分類法を提案する。
我々は,より優れたデータセットや評価指標の開発から,アーキテクチャ設計やモデルトレーニングの改善の可能性に至るまで,テキスト・ツー・イメージ合成モデルの評価,欠点の強調,新たな研究領域の特定に向けた現在の戦略を批判的に検討する。
本総説は, テキストと画像の合成に焦点をあてた, 生成的敵ネットワークに関する過去の調査を補完するものである。
論文 参考訳(メタデータ) (2021-01-25T09:58:36Z) - From A Glance to "Gotcha": Interactive Facial Image Retrieval with
Progressive Relevance Feedback [72.29919762941029]
本稿では,目撃者から徐々にフィードバックを得て顔画像を取得するためのエンドツーエンドフレームワークを提案する。
追加のアノテーションを必要とせずに、私たちのモデルは少しのレスポンスの努力を犠牲にして適用できます。
論文 参考訳(メタデータ) (2020-07-30T18:46:25Z) - Deep learning for scene recognition from visual data: a survey [2.580765958706854]
この研究は、視覚データから深層学習モデルを用いて、シーン認識における最先端の技術をレビューすることを目的としている。
シーン認識は依然としてコンピュータビジョンの新たな分野であり、単一の画像と動的な画像の観点から対処されてきた。
論文 参考訳(メタデータ) (2020-07-03T16:53:18Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
本稿では、関連する出版物をレビューし、視覚知覚分析の分野の概要を概観する。
また,3つの視点から一般的な視覚知覚分析システムの設計原理について述べる。
様々なレベルの粒度と、異なる方法でイメージに対する感情に影響を与えるコンポーネントを考慮し、問題の定式化について論じる。
論文 参考訳(メタデータ) (2020-04-24T10:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。