論文の概要: Semantically Consistent Video Inpainting with Conditional Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.00251v2
- Date: Tue, 08 Oct 2024 23:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:29:12.631076
- Title: Semantically Consistent Video Inpainting with Conditional Diffusion Models
- Title(参考訳): 条件付き拡散モデルによる連続的連続的映像塗装
- Authors: Dylan Green, William Harvey, Saeid Naderiparizi, Matthew Niedoba, Yunpeng Liu, Xiaoxuan Liang, Jonathan Lavington, Ke Zhang, Vasileios Lioutas, Setareh Dabiri, Adam Scibior, Berend Zwartsenberg, Frank Wood,
- Abstract要約: 本稿では,条件付きビデオ拡散モデルを用いた問題解決フレームワークを提案する。
我々は,コンテキストにおける重要な長距離依存関係をキャプチャする塗装特化サンプリングスキームを導入する。
不完全フレーム中の既知の画素を条件付けするための新しい手法を考案する。
- 参考スコア(独自算出の注目度): 16.42354856518832
- License:
- Abstract: Current state-of-the-art methods for video inpainting typically rely on optical flow or attention-based approaches to inpaint masked regions by propagating visual information across frames. While such approaches have led to significant progress on standard benchmarks, they struggle with tasks that require the synthesis of novel content that is not present in other frames. In this paper, we reframe video inpainting as a conditional generative modeling problem and present a framework for solving such problems with conditional video diffusion models. We introduce inpainting-specific sampling schemes which capture crucial long-range dependencies in the context, and devise a novel method for conditioning on the known pixels in incomplete frames. We highlight the advantages of using a generative approach for this task, showing that our method is capable of generating diverse, high-quality inpaintings and synthesizing new content that is spatially, temporally, and semantically consistent with the provided context.
- Abstract(参考訳): ビデオインペイントの最先端の手法は、一般的に、フレーム間で視覚情報を伝播することにより、光の流れや、マスキング領域への注意に基づくアプローチに依存している。
このようなアプローチは標準的なベンチマークにおいて大きな進歩をもたらしたが、他のフレームに存在しない新しいコンテンツの合成を必要とするタスクに苦戦している。
本稿では,条件付き映像拡散モデルを用いて,条件付き映像表現を条件付き生成モデル問題として再設計し,そのような問題を解くための枠組みを提案する。
不完全フレーム内の既知の画素を条件付けするための新しい手法を提案する。
提案手法は, 空間的, 時間的, セマンティックに整合した新しいコンテンツを多種多様かつ高品質に表現し, 合成することができることを示す。
関連論文リスト
- Video Diffusion Models are Strong Video Inpainter [14.402778136825642]
本稿では,FFF-VDI (First Frame Filling Video Diffusion Inpainting Model) を提案する。
我々は、将来のフレームのノイズ潜時情報を伝播して、第1フレームのノイズ潜時符号のマスク領域を埋める。
次に,事前学習した画像間拡散モデルを微調整し,インペイント映像を生成する。
論文 参考訳(メタデータ) (2024-08-21T08:01:00Z) - RTQ: Rethinking Video-language Understanding Based on Image-text Model [55.278942477715084]
ビデオ言語理解は、非常に複雑なセマンティックな詳細を含んでいるため、ユニークな課題を提示する。
本稿では,これらの課題を同時に解決するRTQという新しいフレームワークを提案する。
本モデルは,ビデオ言語による事前学習がなくても,優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-01T04:51:01Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
本稿では,動画に画像モデルを適用するための新しいテキスト誘導型動画翻訳フレームワークを提案する。
我々のフレームワークは,グローバルなスタイルと局所的なテクスチャの時間的一貫性を低コストで実現している。
論文 参考訳(メタデータ) (2023-06-13T17:52:23Z) - Multi-object Video Generation from Single Frame Layouts [84.55806837855846]
本研究では,グローバルシーンを局所オブジェクトに合成するビデオ生成フレームワークを提案する。
我々のフレームワークは、画像生成手法からの非自明な適応であり、この分野では新しくなっています。
本モデルは広範に使用されている2つのビデオ認識ベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-05-06T09:07:01Z) - Internal Video Inpainting by Implicit Long-range Propagation [39.89676105875726]
本稿では,内部学習戦略を取り入れた映像インパインティングのための新しいフレームワークを提案する。
畳み込みニューラルネットワークを既知の領域に適合させることにより、暗黙的に実現可能であることを示す。
提案手法を別の課題に拡張する: 4Kビデオの1フレームに1つの物体マスクを与えるビデオから物体を除去する学習。
論文 参考訳(メタデータ) (2021-08-04T08:56:28Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z) - Short-Term and Long-Term Context Aggregation Network for Video
Inpainting [126.06302824297948]
Video Inpaintingは、ビデオの欠落した領域を復元することを目的としており、ビデオ編集やオブジェクト削除など多くのアプリケーションがある。
本稿では,映像インパインティングにおいて,短期・長期のフレーム情報を効果的に活用する新しいコンテキスト集約ネットワークを提案する。
実験により,最先端の手法よりも優れた塗布結果と高速塗布速度が得られた。
論文 参考訳(メタデータ) (2020-09-12T03:50:56Z) - Learning Joint Spatial-Temporal Transformations for Video Inpainting [58.939131620135235]
本稿では,ビデオインペイントのためのSTTN (Spatial-Temporal Transformer Network) を提案する。
我々は,全ての入力フレームの欠落領域を自己注意で同時に埋めるとともに,空間空間的対角損失によるSTTNの最適化を提案する。
論文 参考訳(メタデータ) (2020-07-20T16:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。