論文の概要: Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2405.00314v1
- Date: Wed, 1 May 2024 04:32:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:27:08.265175
- Title: Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey
- Title(参考訳): ビジョントランスのためのモデル量子化とハードウェアアクセラレーション:総合的な調査
- Authors: Dayou Du, Gu Gong, Xiaowen Chu,
- Abstract要約: ビジョントランスフォーマー(ViT)は近年、いくつかの視覚関連アプリケーションにおいて、畳み込みニューラルネットワーク(CNN)に代わる有望な選択肢として、かなりの注目を集めている。
本稿では,ViTs量子化とそのハードウェアアクセラレーションに関する包括的調査を行う。
- 参考スコア(独自算出の注目度): 6.04807281619171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.
- Abstract(参考訳): ビジョントランスフォーマー(ViT)は最近、いくつかの視覚関連アプリケーションにおいて、畳み込みニューラルネットワーク(CNN)に代わる有望な選択肢として、かなりの注目を集めている。
しかし、その大きなモデルサイズと高い計算とメモリ要求は、特にリソース制約のあるデバイスへのデプロイメントを妨げる。
このことは、アルゴリズム構造と基盤となるハードウェアアクセラレーションの両方を互いの強みに合わせることで、その性能を最適化することを目的とした、ViT特有のアルゴリズムハードウェアの共同設計の必要性を浮き彫りにしている。
モデル量子化は、高精度な数値を低精度に変換することにより、ViTの計算要求とメモリ要求を低減し、これらの量子化アルゴリズムに最適化されたハードウェアの作成を可能にし、効率を向上する。
本稿では,ViTs量子化とそのハードウェアアクセラレーションに関する包括的調査を行う。
私たちはまず、ViTのユニークなアーキテクチャ特性とその実行時特性を掘り下げます。
その後、モデル量子化の基本原理について検討し、続いて、ViTの最先端量子化技術の比較分析を行った。
さらに、量子化されたViTのハードウェアアクセラレーションについて検討し、ハードウェアフレンドリーなアルゴリズム設計の重要性を強調した。
結論として、現在進行中の課題と今後の研究の道筋について論じる。
我々は、関連するオープンソース資料をhttps://github.com/DD-DuDa/awesome-vit-quantization-accelerationで一貫して管理しています。
関連論文リスト
- Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
視覚変換器(ViT)は、畳み込みニューラルネットワーク(CNN)と比較して、コンピュータビジョンタスクにおいて優れた精度を示す。
ハードウェア指向の量子化対応アーキテクチャ検索フレームワークであるQuasar-ViTを提案する。
論文 参考訳(メタデータ) (2024-07-25T16:35:46Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - CHOSEN: Compilation to Hardware Optimization Stack for Efficient Vision Transformer Inference [4.523939613157408]
ビジョントランスフォーマー(ViT)は、コンピュータビジョンへの機械学習アプローチにおける画期的なシフトである。
本稿では,これらの課題に対処するソフトウェアハードウェアの共同設計フレームワークであるCHOSENを紹介し,FPGA上にViTをデプロイするための自動フレームワークを提供する。
ChoSENはDeiT-SとDeiT-Bモデルのスループットを1.5倍と1.42倍改善した。
論文 参考訳(メタデータ) (2024-07-17T16:56:06Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - VAQF: Fully Automatic Software-hardware Co-design Framework for Low-bit
Vision Transformer [121.85581713299918]
量子化ビジョントランス(ViT)のためのFPGAプラットフォーム上で推論アクセラレータを構築するフレームワークVAQFを提案する。
モデル構造と所望のフレームレートから、VAQFはアクティベーションに必要な量子化精度を自動的に出力する。
FPGA上でのViTアクセラレーションに量子化が組み込まれたのはこれが初めてである。
論文 参考訳(メタデータ) (2022-01-17T20:27:52Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z) - Hardware Acceleration of Sparse and Irregular Tensor Computations of ML
Models: A Survey and Insights [18.04657939198617]
本稿では,ハードウェアアクセラレータ上での機械学習モデルのスパースおよび不規則テンソル計算の効率的な実行に関する包括的調査を行う。
異なるハードウェア設計とアクセラレーション技術を分析し、ハードウェアと実行コストの観点から分析する。
スパース、不規則形状、量子化テンソルの加速における重要な課題を理解すること。
論文 参考訳(メタデータ) (2020-07-02T04:08:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。