Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub'
- URL: http://arxiv.org/abs/2405.00330v1
- Date: Wed, 1 May 2024 05:39:07 GMT
- Title: Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub'
- Authors: Syed Hasib Akhter Faruqui, Nazia Tasnim, Iftekhar Ibne Basith, Suleiman Obeidat, Faruk Yildiz,
- Abstract summary: This research aims to introduce an innovative study buddy we will be calling the 'SAMCares'
The system leverages a Large Language Model (LLM) and Retriever-Augmented Generation (RAG) to offer real-time, context-aware, and adaptive educational support.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning never ends, and there is no age limit to grow yourself. However, the educational landscape may face challenges in effectively catering to students' inclusion and diverse learning needs. These students should have access to state-of-the-art methods for lecture delivery, online resources, and technology needs. However, with all the diverse learning sources, it becomes harder for students to comprehend a large amount of knowledge in a short period of time. Traditional assistive technologies and learning aids often lack the dynamic adaptability required for individualized education plans. Large Language Models (LLM) have been used in language translation, text summarization, and content generation applications. With rapid growth in AI over the past years, AI-powered chatbots and virtual assistants have been developed. This research aims to bridge this gap by introducing an innovative study buddy we will be calling the 'SAMCares'. The system leverages a Large Language Model (LLM) (in our case, LLaMa-2 70B as the base model) and Retriever-Augmented Generation (RAG) to offer real-time, context-aware, and adaptive educational support. The context of the model will be limited to the knowledge base of Sam Houston State University (SHSU) course notes. The LLM component enables a chat-like environment to interact with it to meet the unique learning requirements of each student. For this, we will build a custom web-based GUI. At the same time, RAG enhances real-time information retrieval and text generation, in turn providing more accurate and context-specific assistance. An option to upload additional study materials in the web GUI is added in case additional knowledge support is required. The system's efficacy will be evaluated through controlled trials and iterative feedback mechanisms.
Related papers
- Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era [1.3124513975412255]
The landscape of software developer learning resources has continuously evolved, with recent trends favoring engaging formats like video tutorials.
The emergence of Large Language Models (LLMs) like ChatGPT presents a new learning paradigm.
We conducted a survey targeting software developers and computer science students, gathering 341 responses, of which 268 were completed and analyzed.
arXiv Detail & Related papers (2024-10-10T22:57:29Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
Large language models (LLMs) have emerged as a vibrant research topic.
LLMs face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations.
This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources.
arXiv Detail & Related papers (2024-04-14T16:34:31Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - How to Build an AI Tutor that Can Adapt to Any Course and Provide Accurate Answers Using Large Language Model and Retrieval-Augmented Generation [0.0]
The OpenAI Assistants API allows AI Tutor to easily embed, store, retrieve, and manage files and chat history.
The AI Tutor prototype demonstrates its ability to generate relevant, accurate answers with source citations.
arXiv Detail & Related papers (2023-11-29T15:02:46Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
We propose a tailored learning approach to distill such reasoning ability to smaller LMs.
We exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm.
To exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes.
arXiv Detail & Related papers (2023-10-20T07:50:10Z) - DMCNet: Diversified Model Combination Network for Understanding
Engagement from Video Screengrabs [0.4397520291340695]
Engagement plays a major role in developing intelligent educational interfaces.
Non-deep learning models are based on the combination of popular algorithms such as Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF)
The deep learning methods include Densely Connected Convolutional Networks (DenseNet-121), Residual Network (ResNet-18) and MobileNetV1.
arXiv Detail & Related papers (2022-04-13T15:24:38Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Question Generation for Adaptive Education [7.23389716633927]
We show how to fine-tune pre-trained language models for deep knowledge tracing (LM-KT)
This model accurately predicts the probability of a student answering a question correctly, and generalizes to questions not seen in training.
We then use LM-KT to specify the objective and data for training a model to generate questions conditioned on the student and target difficulty.
arXiv Detail & Related papers (2021-06-08T11:46:59Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.