Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era
- URL: http://arxiv.org/abs/2410.08411v1
- Date: Thu, 10 Oct 2024 22:57:29 GMT
- Title: Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era
- Authors: Ahmad Tayeb, Mohammad D. Alahmadi, Elham Tajik, Sonia Haiduc,
- Abstract summary: The landscape of software developer learning resources has continuously evolved, with recent trends favoring engaging formats like video tutorials.
The emergence of Large Language Models (LLMs) like ChatGPT presents a new learning paradigm.
We conducted a survey targeting software developers and computer science students, gathering 341 responses, of which 268 were completed and analyzed.
- Score: 1.3124513975412255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The landscape of software developer learning resources has continuously evolved, with recent trends favoring engaging formats like video tutorials. The emergence of Large Language Models (LLMs) like ChatGPT presents a new learning paradigm. While existing research explores the potential of LLMs in software development and education, their impact on developers' learning and solution-seeking behavior remains unexplored. To address this gap, we conducted a survey targeting software developers and computer science students, gathering 341 responses, of which 268 were completed and analyzed. This study investigates how AI chatbots like ChatGPT have influenced developers' learning preferences when acquiring new skills, exploring technologies, and resolving programming issues. Through quantitative and qualitative analysis, we explore whether AI tools supplement or replace traditional learning resources such as video tutorials, written tutorials, and Q&A forums. Our findings reveal a nuanced view: while video tutorials continue to be highly preferred for their comprehensive coverage, a significant number of respondents view AI chatbots as potential replacements for written tutorials, underscoring a shift towards more interactive and personalized learning experiences. Additionally, AI chatbots are increasingly considered valuable supplements to video tutorials, indicating their growing role in the developers' learning resources. These insights offer valuable directions for educators and the software development community by shedding light on the evolving preferences toward learning resources in the era of ChatGPT.
Related papers
- ChatISA: A Prompt-Engineered Chatbot for Coding, Project Management, Interview and Exam Preparation Activities [0.6784745592354215]
ChatISA is a robust tool that addresses coding inquiries, project management, exam preparation, and interview readiness.
The implementation of ChatISA revealed significant insights and challenges, including the necessity of ethical guidelines and balancing AI usage with maintaining student agency.
All code for ChatISA is made publicly available on GitHub, enabling other institutions to customize and integrate similar AI-driven educational tools within their curricula.
arXiv Detail & Related papers (2024-06-13T04:00:07Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub' [0.6990493129893112]
This research aims to introduce an innovative study buddy we will be calling the 'SAMCares'
The system leverages a Large Language Model (LLM) and Retriever-Augmented Generation (RAG) to offer real-time, context-aware, and adaptive educational support.
arXiv Detail & Related papers (2024-05-01T05:39:07Z) - How to Build an AI Tutor that Can Adapt to Any Course and Provide Accurate Answers Using Large Language Model and Retrieval-Augmented Generation [0.0]
The OpenAI Assistants API allows AI Tutor to easily embed, store, retrieve, and manage files and chat history.
The AI Tutor prototype demonstrates its ability to generate relevant, accurate answers with source citations.
arXiv Detail & Related papers (2023-11-29T15:02:46Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
We develop, implement, and evaluate a novel learning environment enriched with four distinct chatbots.
These roles cater to the three innate psychological needs of learners - competence, autonomy, and relatedness.
The system embraces an inquiry-based learning paradigm, encouraging students to ask questions, seek solutions, and explore their curiosities.
arXiv Detail & Related papers (2023-08-08T02:13:44Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Systematic Review for AI-based Language Learning Tools [0.0]
This review synthesized information on AI tools that were developed between 2017 and 2020.
A majority of these tools utilized machine learning and natural language processing.
After using these tools, learners demonstrated gains in their language abilities and knowledge.
arXiv Detail & Related papers (2021-10-29T11:54:51Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
We propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset.
We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects.
arXiv Detail & Related papers (2021-04-15T20:10:11Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.