Exploring Self-Supervised Vision Transformers for Deepfake Detection: A Comparative Analysis
- URL: http://arxiv.org/abs/2405.00355v2
- Date: Fri, 9 Aug 2024 08:38:35 GMT
- Title: Exploring Self-Supervised Vision Transformers for Deepfake Detection: A Comparative Analysis
- Authors: Huy H. Nguyen, Junichi Yamagishi, Isao Echizen,
- Abstract summary: This paper investigates the effectiveness of self-supervised pre-trained vision transformers (ViTs) compared to supervised pre-trained ViTs and conventional neural networks (ConvNets) for detecting facial deepfake images and videos.
It examines their potential for improved generalization and explainability, especially with limited training data.
By leveraging SSL ViTs for deepfake detection with modest data and partial fine-tuning, we find comparable adaptability to deepfake detection and explainability via the attention mechanism.
- Score: 38.074487843137064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the effectiveness of self-supervised pre-trained vision transformers (ViTs) compared to supervised pre-trained ViTs and conventional neural networks (ConvNets) for detecting facial deepfake images and videos. It examines their potential for improved generalization and explainability, especially with limited training data. Despite the success of transformer architectures in various tasks, the deepfake detection community is hesitant to use large ViTs as feature extractors due to their perceived need for extensive data and suboptimal generalization with small datasets. This contrasts with ConvNets, which are already established as robust feature extractors. Additionally, training ViTs from scratch requires significant resources, limiting their use to large companies. Recent advancements in self-supervised learning (SSL) for ViTs, like masked autoencoders and DINOs, show adaptability across diverse tasks and semantic segmentation capabilities. By leveraging SSL ViTs for deepfake detection with modest data and partial fine-tuning, we find comparable adaptability to deepfake detection and explainability via the attention mechanism. Moreover, partial fine-tuning of ViTs is a resource-efficient option.
Related papers
- Optimizing Vision Transformers with Data-Free Knowledge Transfer [8.323741354066474]
Vision transformers (ViTs) have excelled in various computer vision tasks due to their superior ability to capture long-distance dependencies.
We propose compressing large ViT models using Knowledge Distillation (KD), which is implemented data-free to circumvent limitations related to data availability.
arXiv Detail & Related papers (2024-08-12T07:03:35Z) - Where are my Neighbors? Exploiting Patches Relations in Self-Supervised
Vision Transformer [3.158346511479111]
We propose a simple but still effective self-supervised learning (SSL) strategy to train Vision Transformers (ViTs)
We define a set of SSL tasks based on relations of image patches that the model has to solve before or jointly during the downstream training.
Our RelViT model optimize all the output tokens of the transformer encoder that are related to the image patches, thus exploiting more training signal at each training step.
arXiv Detail & Related papers (2022-06-01T13:25:32Z) - An Extendable, Efficient and Effective Transformer-based Object Detector [95.06044204961009]
We integrate Vision and Detection Transformers (ViDT) to construct an effective and efficient object detector.
ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector.
We extend it to ViDT+ to support joint-task learning for object detection and instance segmentation.
arXiv Detail & Related papers (2022-04-17T09:27:45Z) - Self-Promoted Supervision for Few-Shot Transformer [178.52948452353834]
Self-promoted sUpervisioN (SUN) is a few-shot learning framework for vision transformers (ViTs)
SUN pretrains the ViT on the few-shot learning dataset and then uses it to generate individual location-specific supervision for guiding each patch token.
Experiments show that SUN using ViTs significantly surpasses other few-shot learning frameworks with ViTs and is the first one that achieves higher performance than those CNN state-of-the-arts.
arXiv Detail & Related papers (2022-03-14T12:53:27Z) - ViDT: An Efficient and Effective Fully Transformer-based Object Detector [97.71746903042968]
Detection transformers are the first fully end-to-end learning systems for object detection.
vision transformers are the first fully transformer-based architecture for image classification.
In this paper, we integrate Vision and Detection Transformers (ViDT) to build an effective and efficient object detector.
arXiv Detail & Related papers (2021-10-08T06:32:05Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - On the Adversarial Robustness of Visual Transformers [129.29523847765952]
This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations.
Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-03-29T14:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.