論文の概要: Distance Sampling-based Paraphraser Leveraging ChatGPT for Text Data Manipulation
- arxiv url: http://arxiv.org/abs/2405.00367v1
- Date: Wed, 1 May 2024 07:44:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:17:22.300149
- Title: Distance Sampling-based Paraphraser Leveraging ChatGPT for Text Data Manipulation
- Title(参考訳): テキストデータ操作のための距離サンプリング型パラフラワーレバレッジChatGPT
- Authors: Yoori Oh, Yoseob Han, Kyogu Lee,
- Abstract要約: 本稿では,音声検索タスクにおけるデータ不均衡問題に対処する新しい手法を提案する。
ChatGPTを利用した距離サンプリングに基づくパラフレーズは、操作されたテキストデータの制御可能な分布を生成する。
提案手法は音声テキスト検索の性能を大幅に向上させ,従来のテキスト拡張手法よりも優れていた。
- 参考スコア(独自算出の注目度): 15.765495448426904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been growing interest in audio-language retrieval research, where the objective is to establish the correlation between audio and text modalities. However, most audio-text paired datasets often lack rich expression of the text data compared to the audio samples. One of the significant challenges facing audio-text datasets is the presence of similar or identical captions despite different audio samples. Therefore, under many-to-one mapping conditions, audio-text datasets lead to poor performance of retrieval tasks. In this paper, we propose a novel approach to tackle the data imbalance problem in audio-language retrieval task. To overcome the limitation, we introduce a method that employs a distance sampling-based paraphraser leveraging ChatGPT, utilizing distance function to generate a controllable distribution of manipulated text data. For a set of sentences with the same context, the distance is used to calculate a degree of manipulation for any two sentences, and ChatGPT's few-shot prompting is performed using a text cluster with a similar distance defined by the Jaccard similarity. Therefore, ChatGPT, when applied to few-shot prompting with text clusters, can adjust the diversity of the manipulated text based on the distance. The proposed approach is shown to significantly enhance performance in audio-text retrieval, outperforming conventional text augmentation techniques.
- Abstract(参考訳): 音声検索研究への関心が高まっており、音声とテキストのモダリティの相関を確立することを目的としている。
しかしながら、ほとんどのオーディオテキストとペアのデータセットは、オーディオサンプルと比較してテキストデータのリッチな表現を欠いていることが多い。
オーディオテキストデータセットが直面する重要な課題の1つは、異なるオーディオサンプルにもかかわらず、類似または同一のキャプションが存在することである。
したがって、多対一のマッピング条件下では、音声テキストデータセットは検索タスクの性能が劣る。
本稿では,音声検索タスクにおけるデータ不均衡問題に対処する新しい手法を提案する。
この制限を克服するために,ChatGPTを利用した距離サンプリングに基づくパラフレーズを用いた距離関数を用いて,操作されたテキストデータの制御可能な分布を生成する手法を提案する。
同じ文脈の文の集合に対して、距離は任意の2つの文に対する操作の度合いを計算するために使用され、ChatGPTの数発のプロンプトは、ジャカード類似性によって定義される同様の距離のテキストクラスタを用いて実行される。
したがって、ChatGPTは、テキストクラスタによる少数ショットプロンプトに適用された場合、その距離に基づいて操作されたテキストの多様性を調整することができる。
提案手法は音声テキスト検索の性能を大幅に向上させ,従来のテキスト拡張手法よりも優れていた。
関連論文リスト
- Learning Robust Named Entity Recognizers From Noisy Data With Retrieval Augmentation [67.89838237013078]
名前付きエンティティ認識(NER)モデルは、しばしばノイズの多い入力に悩まされる。
ノイズの多いテキストとそのNERラベルのみを利用できる、より現実的な設定を提案する。
我々は、推論中にテキストを取得することなく、堅牢なNERを改善するマルチビュートレーニングフレームワークを採用している。
論文 参考訳(メタデータ) (2024-07-26T07:30:41Z) - Bridging Language Gaps in Audio-Text Retrieval [28.829775980536574]
本稿では,多言語テキストエンコーダ(SONAR)を用いた言語拡張 (LE) を提案し,テキストデータを言語固有の情報で符号化する。
我々は,一貫したアンサンブル蒸留(CED)の適用により,オーディオエンコーダを最適化し,可変長音声テキスト検索のサポートを強化した。
提案手法は,AudioCaps や Clotho などの一般的なデータセット上でのSOTA (State-of-the-art) の性能を示す,英語の音声テキスト検索に優れている。
論文 参考訳(メタデータ) (2024-06-11T07:12:12Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - Augmenting text for spoken language understanding with Large Language
Models [13.240782495441275]
対応する音声を使わずに書き起こし構文解析データ(未ペアテキスト)の使い方を示す。
実験の結果、既存のドメインと新しいドメインの未ペアテキストは、絶対的エクサクトマッチ(EM)において、それぞれ2%と30%の性能を向上させることがわかった。
本稿では,既存のドメインや新しいドメインに対する未ペアテキストを生成するために,LLM(Large Language Models)を提案する。
論文 参考訳(メタデータ) (2023-09-17T22:25:34Z) - Parameter Efficient Audio Captioning With Faithful Guidance Using
Audio-text Shared Latent Representation [0.9285295512807729]
本稿では,幻覚音の字幕を生成するためのデータ拡張手法を提案する。
次に,パラメータ効率の良い推論時間忠実復号アルゴリズムを提案し,より多くのデータで訓練されたより大きなモデルに匹敵する性能を持つ小型オーディオキャプションモデルを実現する。
論文 参考訳(メタデータ) (2023-09-06T19:42:52Z) - Text-Only Domain Adaptation for End-to-End Speech Recognition through
Down-Sampling Acoustic Representation [67.98338382984556]
音声とテキストの2つのモダリティを共有表現空間にマッピングすることは、テキストのみのデータを用いて、新しいドメインにおけるエンドツーエンドの自動音声認識(ASR)の性能を改善する研究トピックである。
本稿では,テキストのモダリティに合わせるために,ダウンサンプリング音響表現を用いた新しい表現手法を提案する。
我々のASRモデルは、両方のモダリティから統一表現をよりよく学習することができ、ターゲットドメインのテキストのみのデータを用いたドメイン適応を可能にします。
論文 参考訳(メタデータ) (2023-09-04T08:52:59Z) - AugGPT: Leveraging ChatGPT for Text Data Augmentation [59.76140039943385]
本稿では,ChatGPT(AugGPT)に基づくテキストデータ拡張手法を提案する。
AugGPTはトレーニングサンプルの各文を、概念的には似ているが意味的に異なる複数のサンプルに言い換える。
数ショットの学習テキスト分類タスクの実験結果は、提案したAugGPTアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2023-02-25T06:58:16Z) - Audio-text Retrieval in Context [24.38055340045366]
そこで本研究では,音声・テキストのアライメントを改善するために,複数のオーディオ機能とシーケンスアグリゲーション手法について検討する。
我々は,事前学習した音声特徴と記述子に基づくアグリゲーション法を用いた文脈音声テキスト検索システムを構築した。
提案システムでは、リコール、中央値、平均値を含むすべての指標において、双方向音声テキスト検索において顕著な改善が達成されている。
論文 参考訳(メタデータ) (2022-03-25T13:41:17Z) - Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration [62.75234183218897]
話者の訓練データなしで自然かつ一貫性のあるターゲット音声を生成する一段階の文脈認識フレームワークを提案する。
変換器をベースとしたデコーダを用いて,編集音声のメルスペクトルを生成する。
これは最近のゼロショット TTS エンジンを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-09-12T04:17:53Z) - Continuous speech separation: dataset and analysis [52.10378896407332]
自然な会話では、音声信号は連続的であり、重複成分と重複成分の両方を含む。
本稿では,連続音声分離アルゴリズムを評価するためのデータセットとプロトコルについて述べる。
論文 参考訳(メタデータ) (2020-01-30T18:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。