論文の概要: Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2405.00378v1
- Date: Wed, 1 May 2024 08:17:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:17:22.297376
- Title: Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
- Title(参考訳): 半監督型医用画像分割のための適応的双方向置換法
- Authors: Hanyang Chi, Jian Pang, Bingfeng Zhang, Weifeng Liu,
- Abstract要約: 整合性学習は、半教師付き医療画像セグメンテーションにおいて、ラベルのないデータに取り組むための中心的な戦略である。
本稿では,上記の課題を解決するための適応的双方向変位法を提案する。
- 参考スコア(独自算出の注目度): 11.195959019678314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consistency learning is a central strategy to tackle unlabeled data in semi-supervised medical image segmentation (SSMIS), which enforces the model to produce consistent predictions under the perturbation. However, most current approaches solely focus on utilizing a specific single perturbation, which can only cope with limited cases, while employing multiple perturbations simultaneously is hard to guarantee the quality of consistency learning. In this paper, we propose an Adaptive Bidirectional Displacement (ABD) approach to solve the above challenge. Specifically, we first design a bidirectional patch displacement based on reliable prediction confidence for unlabeled data to generate new samples, which can effectively suppress uncontrollable regions and still retain the influence of input perturbations. Meanwhile, to enforce the model to learn the potentially uncontrollable content, a bidirectional displacement operation with inverse confidence is proposed for the labeled images, which generates samples with more unreliable information to facilitate model learning. Extensive experiments show that ABD achieves new state-of-the-art performances for SSMIS, significantly improving different baselines. Source code is available at https://github.com/chy-upc/ABD.
- Abstract(参考訳): 一貫性学習は、半教師付き医療画像セグメンテーション(SSMIS)におけるラベルなしデータに対処する中心的な戦略であり、摂動下で一貫した予測をモデルに強制する。
しかし、現在のほとんどのアプローチは、限られたケースにしか対応できない特定の単一摂動の利用にのみ焦点をあてているが、同時に複数の摂動を採用することは、一貫性学習の品質を保証するのは難しい。
本稿では,この課題を解決するための適応的双方向変位(ABD)手法を提案する。
具体的には、まず、ラベルのないデータに対する信頼性の高い予測信頼度に基づいて双方向のパッチ変位を設計し、新しいサンプルを生成し、制御不能な領域を効果的に抑制し、入力摂動の影響を継続する。
一方、ラベル付き画像に対して、潜在的に制御不能な内容の学習を強制するために、より信頼できない情報を持つサンプルを生成し、モデル学習を容易にする双方向変位操作を提案する。
大規模な実験により、ABDはSSMISの新たな最先端性能を実現し、異なるベースラインを著しく改善した。
ソースコードはhttps://github.com/chy-upc/ABD.comで入手できる。
関連論文リスト
- Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
擬似ラベルノイズは主に不安定なサンプルに含まれており、ほとんどのピクセルの予測は自己学習中に大きく変化する。
我々は, 安定・不安定な試料を効果的に発見する, SND(Stable Neighbor Denoising)アプローチを導入する。
SNDは、様々なSFUDAセマンティックセグメンテーション設定における最先端メソッドよりも一貫して優れている。
論文 参考訳(メタデータ) (2024-06-10T21:44:52Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
半教師付きドメイン適応(SSDA)は、ソースドメインデータとラベル付きターゲットサンプルを効果的に活用することにより、学習者を新しいドメインに適応させる。
提案手法は,SSDAデータセットの有効性と汎用性の観点から,SOTA法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-30T16:48:28Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
連続ビデオドメイン適応(CVDA、Continuous Video Domain Adaptation)は、ソースモデルが個々の変更対象ドメインに適応する必要があるシナリオである。
CVDAの課題に対処するため,遺伝子組み換え型自己知識解離(CART)を用いた信頼性保証ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-18T16:40:10Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
我々は、RCPS(Rectified Contrastive Pseudo Supervision)という、新しい半教師付きセグメンテーション手法を提案する。
RCPSは、修正された疑似監督とボクセルレベルのコントラスト学習を組み合わせて、半教師付きセグメンテーションの有効性を向上させる。
実験結果から, 半教師付き医用画像分割における最先端手法と比較して, 高いセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2023-01-13T12:03:58Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
MTACと呼ばれる不確実な表情認識に対処するためのマルチタスク支援補正法を提案する。
具体的には、信頼度推定ブロックと重み付け正則化モジュールを用いて、固体試料をハイライトし、バッチ毎に不確かさサンプルを抑圧する。
RAF-DB、AffectNet、AffWild2データセットの実験は、MTACが合成および実際の不確実性に直面した際のベースラインよりも大幅に改善されていることを示した。
論文 参考訳(メタデータ) (2022-12-14T10:28:08Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
近年のSemi-Supervised Object Detection (SS-OD) 法は主に自己学習に基づいており、教師モデルにより、ラベルなしデータを監視信号としてハードな擬似ラベルを生成する。
実験結果から,これらの手法が直面する課題を分析した。
本稿では,大規模オブジェクトサイズの分散とクラス不均衡に頑健な簡易かつ効果的なエンド・ツー・エンド知識蒸留フレームワークであるSED(Scale-Equivalent Distillation)を提案する。
論文 参考訳(メタデータ) (2022-03-23T07:33:37Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
本稿では,SSHT(Semi-supervised Source hypothesis Transfer)という新たなタスクを提案する。
本研究では、ランダムに拡張された2つの未ラベルデータ間の予測整合性を容易にし、SSHTの簡易かつ効果的なフレームワークである一貫性と多様性の学習(CDL)を提案する。
実験の結果,本手法は,DomainNet,Office-Home,Office-31データセット上で,既存のSSDA手法や教師なしモデル適応手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-07T04:14:24Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
弱い教師付き学習は、セマンティックセグメンテーションにおける大きなラベル付きデータセットの必要性を軽減するための魅力的な代替手段として登場した。
本稿では,マルチモーダル画像シナリオにおける自己スーパービジョンを活用した新しい学習戦略を提案する。
私たちのアプローチは、同じ学習条件下で関連する最近の文学を上回ります。
論文 参考訳(メタデータ) (2021-04-06T13:14:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。