Employing Federated Learning for Training Autonomous HVAC Systems
- URL: http://arxiv.org/abs/2405.00389v1
- Date: Wed, 1 May 2024 08:42:22 GMT
- Title: Employing Federated Learning for Training Autonomous HVAC Systems
- Authors: Fredrik Hagström, Vikas Garg, Fabricio Oliveira,
- Abstract summary: Buildings account for 40 % of global energy consumption.
Implementing smart, energy-efficient HVAC systems has the potential to significantly impact the course of climate change.
Model-free reinforcement learning algorithms have been shown to outperform classical controllers in terms of energy cost and consumption, as well as thermal comfort.
- Score: 3.4137115855910767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Buildings account for 40 % of global energy consumption. A considerable portion of building energy consumption stems from heating, ventilation, and air conditioning (HVAC), and thus implementing smart, energy-efficient HVAC systems has the potential to significantly impact the course of climate change. In recent years, model-free reinforcement learning algorithms have been increasingly assessed for this purpose due to their ability to learn and adapt purely from experience. They have been shown to outperform classical controllers in terms of energy cost and consumption, as well as thermal comfort. However, their weakness lies in their relatively poor data efficiency, requiring long periods of training to reach acceptable policies, making them inapplicable to real-world controllers directly. Hence, common research goals are to improve the learning speed, as well as to improve their ability to generalize, in order to facilitate transfer learning to unseen building environments. In this paper, we take a federated learning approach to training the reinforcement learning controller of an HVAC system. A global control policy is learned by aggregating local policies trained on multiple data centers located in different climate zones. The goal of the policy is to simultaneously minimize energy consumption and maximize thermal comfort. The federated optimization strategy indirectly increases both the rate at which experience data is collected and the variation in the data. We demonstrate through experimental evaluation that these effects lead to a faster learning speed, as well as greater generalization capabilities in the federated policy compared to any individually trained policy.
Related papers
- Real-World Data and Calibrated Simulation Suite for Offline Training of Reinforcement Learning Agents to Optimize Energy and Emission in Buildings for Environmental Sustainability [2.7624021966289605]
We present the first open source interactive HVAC control dataset extracted from live sensor measurements of devices in real office buildings.
For ease of use, our RL environments are all compatible with the OpenAI gym environment standard.
arXiv Detail & Related papers (2024-10-02T06:30:07Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Laxity-Aware Scalable Reinforcement Learning for HVAC Control [2.0625936401496237]
We tackle the curse of dimensionality issue in modeling and control by utilizing the concept of laxity to quantify the emergency level of each operation request.
We propose a two-level approach to address energy optimization for a large population of HVAC systems.
arXiv Detail & Related papers (2023-06-29T01:28:14Z) - Flexible Attention-Based Multi-Policy Fusion for Efficient Deep
Reinforcement Learning [78.31888150539258]
Reinforcement learning (RL) agents have long sought to approach the efficiency of human learning.
Prior studies in RL have incorporated external knowledge policies to help agents improve sample efficiency.
We present Knowledge-Grounded RL (KGRL), an RL paradigm fusing multiple knowledge policies and aiming for human-like efficiency and flexibility.
arXiv Detail & Related papers (2022-10-07T17:56:57Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
Energy saving and carbon emission reduction in buildings is one of the key measures in combating climate change.
The optimization of chiller system power consumption had been extensively studied in the mechanical engineering and building service domains.
With the advance of big data and AI, the adoption of machine learning into the optimization problems becomes popular.
arXiv Detail & Related papers (2020-10-09T09:51:03Z) - One for Many: Transfer Learning for Building HVAC Control [24.78264822089494]
We present a novel transfer learning based approach to overcome this challenge.
Our approach can effectively transfer a DRL-based HVAC controller trained for the source building to a controller for the target building with minimal effort and improved performance.
arXiv Detail & Related papers (2020-08-09T01:32:37Z) - A Relearning Approach to Reinforcement Learning for Control of Smart
Buildings [1.8799681615947088]
This paper demonstrates that continual relearning of control policies using incremental deep reinforcement learning (RL) can improve policy learning for non-stationary processes.
We develop an incremental RL technique that simultaneously reduces building energy consumption without sacrificing overall comfort.
arXiv Detail & Related papers (2020-08-04T23:31:05Z) - Data-driven control of micro-climate in buildings: an event-triggered
reinforcement learning approach [56.22460188003505]
We formulate the micro-climate control problem based on semi-Markov decision processes.
We propose two learning algorithms for event-triggered control of micro-climate in buildings.
We show the efficacy of our proposed approach via designing a smart learning thermostat.
arXiv Detail & Related papers (2020-01-28T18:20:43Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.