Diffusion Guidance Is a Controllable Policy Improvement Operator
- URL: http://arxiv.org/abs/2505.23458v1
- Date: Thu, 29 May 2025 14:06:50 GMT
- Title: Diffusion Guidance Is a Controllable Policy Improvement Operator
- Authors: Kevin Frans, Seohong Park, Pieter Abbeel, Sergey Levine,
- Abstract summary: CFGRL is trained with the simplicity of supervised learning, yet can further improve on the policies in the data.<n>On offline RL tasks, we observe a reliable trend -- increased guidance weighting leads to increased performance.
- Score: 98.11511661904618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At the core of reinforcement learning is the idea of learning beyond the performance in the data. However, scaling such systems has proven notoriously tricky. In contrast, techniques from generative modeling have proven remarkably scalable and are simple to train. In this work, we combine these strengths, by deriving a direct relation between policy improvement and guidance of diffusion models. The resulting framework, CFGRL, is trained with the simplicity of supervised learning, yet can further improve on the policies in the data. On offline RL tasks, we observe a reliable trend -- increased guidance weighting leads to increased performance. Of particular importance, CFGRL can operate without explicitly learning a value function, allowing us to generalize simple supervised methods (e.g., goal-conditioned behavioral cloning) to further prioritize optimality, gaining performance for "free" across the board.
Related papers
- Policy-Driven World Model Adaptation for Robust Offline Model-based Reinforcement Learning [6.189693079685375]
offline model-based RL (MBRL) explicitly learns a world model from a static dataset.<n>We propose a framework that dynamically adapts the world model alongside the policy.<n>We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three Tokamak Control tasks, demonstrating its state-of-the-art performance.
arXiv Detail & Related papers (2025-05-19T20:14:33Z) - What Matters for Batch Online Reinforcement Learning in Robotics? [65.06558240091758]
The ability to learn from large batches of autonomously collected data for policy improvement holds the promise of enabling truly scalable robot learning.<n>Previous works have applied imitation learning and filtered imitation learning methods to the batch online RL problem.<n>We analyze how these axes affect performance and scaling with the amount of autonomous data.
arXiv Detail & Related papers (2025-05-12T21:24:22Z) - GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning [17.544255491384046]
We propose a minimalist RL approach termed Group Policy Gradient (GPG)<n>Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions.<n>Our approach achieves superior performance without relying on auxiliary techniques or adjustments.
arXiv Detail & Related papers (2025-04-03T12:53:41Z) - RLDG: Robotic Generalist Policy Distillation via Reinforcement Learning [53.8293458872774]
We propose Reinforcement Learning Distilled Generalists (RLDG) to generate high-quality training data for finetuning generalist policies.<n>We demonstrate that generalist policies trained with RL-generated data consistently outperform those trained with human demonstrations.<n>Our results suggest that combining task-specific RL with generalist policy distillation offers a promising approach for developing more capable and efficient robotic manipulation systems.
arXiv Detail & Related papers (2024-12-13T04:57:55Z) - Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
In deep Reinforcement Learning (RL) models trained using gradient-based techniques, the choice of gradient and its learning rate are crucial to achieving good performance.<n>We propose dynamic Learning Rate for deep Reinforcement Learning (LRRL), a meta-learning approach that selects the learning rate based on the agent's performance during training.
arXiv Detail & Related papers (2024-10-16T14:15:28Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Efficient Offline Reinforcement Learning: The Critic is Critical [5.916429671763282]
Off-policy reinforcement learning provides a promising approach for improving performance beyond supervised approaches.
We propose a best-of-both approach by first learning the behavior policy and critic with supervised learning, before improving with off-policy reinforcement learning.
arXiv Detail & Related papers (2024-06-19T09:16:38Z) - SMORE: Score Models for Offline Goal-Conditioned Reinforcement Learning [33.125187822259186]
Offline Goal-Conditioned Reinforcement Learning (GCRL) is tasked with learning to achieve multiple goals in an environment purely from offline datasets using sparse reward functions.
We present a novel approach to GCRL under a new lens of mixture-distribution matching, leading to our discriminator-free method: SMORe.
arXiv Detail & Related papers (2023-11-03T16:19:33Z) - Variance-Covariance Regularization Improves Representation Learning [28.341622247252705]
We adapt a self-supervised learning regularization technique to supervised learning contexts, introducing Variance-Covariance Regularization (VCReg)
We demonstrate that VCReg significantly enhances transfer learning for images and videos, achieving state-of-the-art performance across numerous tasks and datasets.
In summary, VCReg offers a universally applicable regularization framework that significantly advances transfer learning and highlights the connection between gradient starvation, neural collapse, and feature transferability.
arXiv Detail & Related papers (2023-06-23T05:01:02Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.