論文の概要: CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2405.00390v1
- Date: Wed, 1 May 2024 08:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:17:22.277753
- Title: CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models
- Title(参考訳): CofiPara: 大規模マルチモーダルモデルを用いたマルチモーダルサルカズムターゲット同定のための粗粒パラダイム
- Authors: Hongzhan Lin, Zixin Chen, Ziyang Luo, Mingfei Cheng, Jing Ma, Guang Chen,
- Abstract要約: 本稿では,大きめのパラダイムを持つ多目的MSTIフレームワークを提案する。
マルチモーダル推論におけるLMM(Large Multimodal Models)の強力な能力に着想を得て、まずLMMに取り組み、マルチモーダルサルカズム検出における小言語モデルの粗粒化事前学習のための競合する有理性を生成する。
そこで本稿では,LMM に内在する潜在的なノイズによる負の影響を緩和し,より微細な目標同定モデルを提案する。
- 参考スコア(独自算出の注目度): 14.453131020178564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.
- Abstract(参考訳): ソーシャルメディアはマルチモーダル・サルカズムに満ちており、テキストや画像のモダリティで直接明らかでない暗黙の矛盾のため、サルカズムの標的を特定することは特に困難である。
マルチモーダルサルカズムターゲット同定(MSTI)の現在の手法は、主に、テキストと画像の両方を通して伝達されるマルチモーダルサルカズムの微妙な理解を見越して、端から端まで、表面的な指標に焦点を当てている。
本稿では,大きめのパラダイムを持つ多目的MSTIフレームワークを提案する。
マルチモーダル推論におけるLMM(Large Multimodal Models)の強力な能力に着想を得て、まずLMMに取り組み、マルチモーダルサルカズム検出における小言語モデルの粗粒化事前学習のための競合する有理性を生成する。
次に、よりきめ細かな目標同定のためのモデルを微調整する。
そこで,本研究の枠組みは,マルチモーダルサルカズム内での複雑な目標を十分に明らかにし,LMMの潜在的なノイズによる負の影響を緩和するものである。
実験の結果,我々のモデルは最先端のMSTI法よりも優れており,また,サルカズムの解読における説明可能性も顕著であることがわかった。
関連論文リスト
- Towards Probing Speech-Specific Risks in Large Multimodal Models: A Taxonomy, Benchmark, and Insights [50.89022445197919]
本研究は,8つのリスクカテゴリーを敵意(悪意的皮肉と脅し),悪意的模倣(年齢,性別,民族),ステレオタイプ的バイアス(年齢,性別,民族)を対象とする音声特異的リスク分類法を提案する。
分類に基づいて,これらのリスクのカテゴリを検出するために,現在のLMM能力を評価するための小規模データセットを作成する。
論文 参考訳(メタデータ) (2024-06-25T10:08:45Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System [57.650338588086186]
本稿では,MMSDの欠点を修正する補正データセットMMSD2.0を紹介する。
マルチビューCLIPと呼ばれる,複数視点から多粒度キューを活用可能な新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-14T03:22:51Z) - Multi-source Semantic Graph-based Multimodal Sarcasm Explanation
Generation [53.97962603641629]
本稿では,mulTi-source sEmantic grAph-based Multimodal sarcasm explanation scheme, TEAMを提案する。
TEAMは、入力画像から従来のグローバルな視覚的特徴の代わりに、オブジェクトレベルのセマンティックメタデータを抽出する。
TEAMはマルチソース意味関係を包括的に特徴付けるマルチソース意味グラフを導入している。
論文 参考訳(メタデータ) (2023-06-29T03:26:10Z) - Chain-of-Thought Prompt Distillation for Multimodal Named Entity
Recognition and Multimodal Relation Extraction [8.169359626365619]
思考のテキストチェーン(CoT) -- 中間推論ステップのシーケンスを生成します。
本稿では,大規模言語モデルからのコモンセンス推論能力を同化するための新しい条件付きプロンプト蒸留法を提案する。
我々のアプローチは最先端の精度を達成し、解釈可能性、データ効率、ドメイン間の一般化に関する多くの利点を示す。
論文 参考訳(メタデータ) (2023-06-25T04:33:56Z) - Towards Multi-Modal Sarcasm Detection via Hierarchical Congruity
Modeling with Knowledge Enhancement [31.97249246223621]
サルカスム(Sarcasm)は、文字通りの意味と暗示意図の相違を示す言語現象である。
既存の技術のほとんどは、テキスト入力と付随する画像の間の原子レベルの不整合をモデル化しただけだった。
本稿では,マルチヘッドのクロスアテンション機構に基づく原子レベルの合同性と,グラフニューラルネットワークに基づく合成レベルの合同性の両方を探索し,サルカズム検出のための新しい階層的枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-07T12:44:33Z) - Multimodal Learning using Optimal Transport for Sarcasm and Humor
Detection [76.62550719834722]
会話ビデオと画像テキストのペアからマルチモーダルサルカズムとユーモアを検出する。
本稿では,モーダル内対応を利用したマルチモーダル学習システム MuLOT を提案する。
3つのベンチマークデータセット上で,マルチモーダルサルカズムとユーモア検出のためのアプローチを検証した。
論文 参考訳(メタデータ) (2021-10-21T07:51:56Z) - Multi-Modal Sarcasm Detection Based on Contrastive Attention Mechanism [7.194040730138362]
本研究では、モーダリティ間コントラストアテンションに基づくSarcasm Detection(ConAttSD)モデルを構築し、モーダリティ間コントラストアテンション機構を用いて発話のコントラスト特徴を抽出する。
ベンチマークマルチモーダルサルカズムデータセットであるMUStARDに関する実験により,提案したConAttSDモデルの有効性を実証した。
論文 参考訳(メタデータ) (2021-09-30T14:17:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。