論文の概要: Certified Adversarial Robustness of Machine Learning-based Malware Detectors via (De)Randomized Smoothing
- arxiv url: http://arxiv.org/abs/2405.00392v1
- Date: Wed, 1 May 2024 08:45:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:17:22.273788
- Title: Certified Adversarial Robustness of Machine Learning-based Malware Detectors via (De)Randomized Smoothing
- Title(参考訳): De)Randomized Smoothingによる機械学習型マルウェア検出器の認証逆ロバスト性
- Authors: Daniel Gibert, Luca Demetrio, Giulio Zizzo, Quan Le, Jordi Planes, Battista Biggio,
- Abstract要約: 我々は,特定の実行可能および逆パッチサイズに対して,敵EXEmpleが存在しないことを保証する,パッチ攻撃に対する認証可能な防御を導入する。
提案手法は, 決定論的ロバスト性証明を提供する (de)randomized smoothing に着想を得たものである。
その結果,本手法は,強いコンテンツ挿入攻撃に対する不整合性を示し,ランダムなスムースティングに基づく防御性能に優れていた。
- 参考スコア(独自算出の注目度): 9.881799766856476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based malware detection systems are vulnerable to adversarial EXEmples - carefully-crafted malicious programs that evade detection with minimal perturbation. As such, the community is dedicating effort to develop mechanisms to defend against adversarial EXEmples. However, current randomized smoothing-based defenses are still vulnerable to attacks that inject blocks of adversarial content. In this paper, we introduce a certifiable defense against patch attacks that guarantees, for a given executable and an adversarial patch size, no adversarial EXEmple exist. Our method is inspired by (de)randomized smoothing which provides deterministic robustness certificates. During training, a base classifier is trained using subsets of continguous bytes. At inference time, our defense splits the executable into non-overlapping chunks, classifies each chunk independently, and computes the final prediction through majority voting to minimize the influence of injected content. Furthermore, we introduce a preprocessing step that fixes the size of the sections and headers to a multiple of the chunk size. As a consequence, the injected content is confined to an integer number of chunks without tampering the other chunks containing the real bytes of the input examples, allowing us to extend our certified robustness guarantees to content insertion attacks. We perform an extensive ablation study, by comparing our defense with randomized smoothing-based defenses against a plethora of content manipulation attacks and neural network architectures. Results show that our method exhibits unmatched robustness against strong content-insertion attacks, outperforming randomized smoothing-based defenses in the literature.
- Abstract(参考訳): ディープラーニングベースのマルウェア検出システムは、敵のEXEmplesに対して脆弱である。
そのため、コミュニティは敵のEXEmplesに対抗するためのメカニズムの開発に力を注いでいる。
しかし、現在のランダム化スムースティングベースの防御は、敵コンテンツのブロックを注入する攻撃に対して依然として脆弱である。
本稿では,ある実行可能かつ敵のパッチサイズに対して,敵のEXEmpleが存在しないことを保証した,パッチ攻撃に対する認証された防御法を提案する。
提案手法は, 決定論的ロバスト性証明を提供する (de)randomized smoothing に着想を得たものである。
トレーニング中、ベース分類器は連続したバイトのサブセットを使用して訓練される。
予測時には、実行可能ファイルを重複しないチャンクに分割し、各チャンクを独立に分類し、多数決によって最終予測を計算し、注入されたコンテンツの影響を最小限に抑える。
さらに、セクションとヘッダのサイズをチャンクサイズの倍に修正する前処理ステップを導入する。
その結果、インジェクションされたコンテンツは、入力例の実際のバイトを含む他のチャンクを改ざんすることなく、整数数のチャンクに制限され、コンテンツ挿入攻撃に対する認証された堅牢性を保証することができる。
我々は,多数のコンテンツ操作攻撃やニューラルネットワークアーキテクチャに対する無作為なスムーズな防御と,我々の防衛を比較して,広範囲にわたるアブレーション研究を行う。
その結果,本手法は,強いコンテンツ挿入攻撃に対する不整合性を示し,ランダムなスムースティングに基づく防御性能に優れていた。
関連論文リスト
- Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
適応型大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
提案するSEMANTICSMOOTHは,与えられた入力プロンプトのセマンティック変換されたコピーの予測を集約するスムージングベースのディフェンスである。
論文 参考訳(メタデータ) (2024-02-25T20:36:03Z) - A Robust Defense against Adversarial Attacks on Deep Learning-based
Malware Detectors via (De)Randomized Smoothing [4.97719149179179]
本稿では,(デ)ランダム化平滑化に触発された敵のマルウェアに対する現実的な防御法を提案する。
本研究では,マルウェア作者が挿入した敵対的コンテンツを,バイトの関連部分集合を選択することでサンプリングする可能性を減らす。
論文 参考訳(メタデータ) (2024-02-23T11:30:12Z) - Towards a Practical Defense against Adversarial Attacks on Deep
Learning-based Malware Detectors via Randomized Smoothing [3.736916304884177]
本稿では,ランダムな平滑化に触発された敵のマルウェアに対する現実的な防御法を提案する。
本研究では,入力のランダム化にガウスノイズやラプラスノイズを使う代わりに,ランダム化アブレーションに基づく平滑化方式を提案する。
BODMASデータセットに対する様々な最先端の回避攻撃に対するアブレーションモデルの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2023-08-17T10:30:25Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers
via Randomized Deletion [23.309600117618025]
離散列分類器のランダム化スムーシングを適用して、編集距離境界の敵に対して確固たるロバスト性を提供する。
私たちの証明は、確立されたNeyman-Pearsonアプローチから逸脱したものです。
一般的なMalConvマルウェア検出モデルに適用すると、スムーシング機構RS-Delは128バイトの編集距離半径で91%の精度を達成できる。
論文 参考訳(メタデータ) (2023-01-31T01:40:26Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。