論文の概要: Detail-Enhancing Framework for Reference-Based Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2405.00431v1
- Date: Wed, 1 May 2024 10:27:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:57:39.048976
- Title: Detail-Enhancing Framework for Reference-Based Image Super-Resolution
- Title(参考訳): 参照型画像超解像のための詳細化フレームワーク
- Authors: Zihan Wang, Ziliang Xiong, Hongying Tang, Xiaobing Yuan,
- Abstract要約: 参照型超解像のためのDEF(Detail-Enhancing Framework)を提案する。
提案手法は,比較した数値結果を維持しながら,優れた視覚的結果が得られる。
- 参考スコア(独自算出の注目度): 8.899312174844725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed the prosperity of reference-based image super-resolution (Ref-SR). By importing the high-resolution (HR) reference images into the single image super-resolution (SISR) approach, the ill-posed nature of this long-standing field has been alleviated with the assistance of texture transferred from reference images. Although the significant improvement in quantitative and qualitative results has verified the superiority of Ref-SR methods, the presence of misalignment before texture transfer indicates room for further performance improvement. Existing methods tend to neglect the significance of details in the context of comparison, therefore not fully leveraging the information contained within low-resolution (LR) images. In this paper, we propose a Detail-Enhancing Framework (DEF) for reference-based super-resolution, which introduces the diffusion model to generate and enhance the underlying detail in LR images. If corresponding parts are present in the reference image, our method can facilitate rigorous alignment. In cases where the reference image lacks corresponding parts, it ensures a fundamental improvement while avoiding the influence of the reference image. Extensive experiments demonstrate that our proposed method achieves superior visual results while maintaining comparable numerical outcomes.
- Abstract(参考訳): 近年、参照ベースの画像超解像(Ref-SR)の繁栄が見られた。
高分解能(HR)参照画像を単一の画像超解像(SISR)アプローチにインポートすることにより、この長年のフィールドの不適切な性質は、参照画像から転写されたテクスチャの助けを借りて緩和されている。
定量的および定性的な結果の大幅な改善はRef-SR法の優位性を証明しているが, テクスチャ転送前のミスアライメントの存在は, さらなる性能向上の余地を示している。
既存の手法では、比較の文脈における詳細の重要性を無視する傾向があるため、低解像度(LR)画像に含まれる情報を十分に活用することができない。
本稿では,参照型超解像のためのDEF(Detail-Enhancing Framework)を提案する。
参照画像に対応する部分が存在する場合,本手法は厳密なアライメントを容易にする。
参照画像が対応する部分を欠いている場合、参照画像の影響を回避しつつ、根本的な改善を確実にする。
大規模な実験により,提案手法は比較した数値結果を維持しつつ,優れた視覚的結果が得られることを示した。
関連論文リスト
- Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model [13.368558322546784]
RefSRは、リモートセンシング画像の空間的および時間的解像度にまたがる橋を構築する可能性がある。
条件付き拡散モデルにより、現実的な高解像度画像を生成する新たな機会が開かれた。
本稿では,RefSRに対するRef-Diffを提案する。
論文 参考訳(メタデータ) (2024-03-26T07:48:49Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
本稿では,低解像度画像の理解能力を備えたSRモデルを実現するCoSeR(Cognitive Super-Resolution)フレームワークを提案する。
画像の外観と言語理解を組み合わせることで、認知的な埋め込みを生成する。
画像の忠実度をさらに向上させるため、「オール・イン・アテンション」と呼ばれる新しい条件注入方式を提案する。
論文 参考訳(メタデータ) (2023-11-27T16:33:29Z) - RRSR:Reciprocal Reference-based Image Super-Resolution with Progressive
Feature Alignment and Selection [66.08293086254851]
本稿では,RefSRネットワークの学習を強化するための相互学習フレームワークを提案する。
新たに提案したモジュールは,マルチスケールの特徴空間に参照入力画像をアライメントし,参照認識機能の選択を行う。
我々は,最近のRefSRモデルが相互学習パラダイムによって一貫した改善が可能であることを実証的に示す。
論文 参考訳(メタデータ) (2022-11-08T12:39:35Z) - Reference-based Image Super-Resolution with Deformable Attention
Transformer [62.71769634254654]
RefSRは、補助参照(Ref)画像を超解像低解像度(LR)画像に活用することを目的としている。
本稿では,複数のスケールを持つ変形可能なアテンション変換器,すなわちDATSRを提案する。
DATSRがベンチマークデータセット上で最先端のパフォーマンスを達成することを示す実験を行った。
論文 参考訳(メタデータ) (2022-07-25T07:07:00Z) - Rethinking Super-Resolution as Text-Guided Details Generation [21.695227836312835]
テキストと画像のモダリティからの情報を有効に活用できるテキストガイド型超解法(TGSR)フレームワークを提案する。
提案したTGSRは、粗い処理によってテキスト記述と一致するHR画像の詳細を生成することができる。
論文 参考訳(メタデータ) (2022-07-14T01:46:38Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Attention-based Multi-Reference Learning for Image Super-Resolution [29.361342747786164]
本稿では,新しいアテンションに基づくマルチ参照超解像ネットワークを提案する。
類似したテクスチャを複数の参照画像から超解像出力に適応的に転送する。
最先端の参照超解像法よりも性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-08-31T09:12:26Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
本稿では、RefSRのためのMASAネットワークを提案し、これらの問題に対処するために2つの新しいモジュールを設計する。
提案したMatch & extract Moduleは、粗大な対応マッチング方式により計算コストを大幅に削減する。
空間適応モジュールは、LR画像とRef画像の分布の差を学習し、Ref特徴の分布を空間適応的にLR特徴の分布に再マップする。
論文 参考訳(メタデータ) (2021-06-04T07:15:32Z) - Robust Reference-based Super-Resolution via C2-Matching [77.51610726936657]
超解像(Ref-SR)は、最近、高分解能(HR)参照画像を導入して、低分解能(LR)入力画像を強化するための有望なパラダイムとして登場した。
既存のRef-SR法は主に暗黙の対応に頼り、参照画像からHRテクスチャを借用し、入力画像の情報損失を補う。
本稿では,C2-Matchingを提案する。
論文 参考訳(メタデータ) (2021-06-03T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。