Robust Semi-supervised Learning via $f$-Divergence and $α$-Rényi Divergence
- URL: http://arxiv.org/abs/2405.00454v1
- Date: Wed, 1 May 2024 11:16:02 GMT
- Title: Robust Semi-supervised Learning via $f$-Divergence and $α$-Rényi Divergence
- Authors: Gholamali Aminian, Amirhossien Bagheri, Mahyar JafariNodeh, Radmehr Karimian, Mohammad-Hossein Yassaee,
- Abstract summary: This paper investigates a range of empirical risk functions and regularization methods suitable for self-training methods in semi-supervised learning.
Inspired by the theoretical foundations rooted in divergences, i.e., $f$-divergences and $alpha$-R'enyi divergence, we also provide valuable insights to enhance the understanding of our empirical risk functions and regularization techniques.
- Score: 2.9965913883475137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a range of empirical risk functions and regularization methods suitable for self-training methods in semi-supervised learning. These approaches draw inspiration from various divergence measures, such as $f$-divergences and $\alpha$-R\'enyi divergences. Inspired by the theoretical foundations rooted in divergences, i.e., $f$-divergences and $\alpha$-R\'enyi divergence, we also provide valuable insights to enhance the understanding of our empirical risk functions and regularization techniques. In the pseudo-labeling and entropy minimization techniques as self-training methods for effective semi-supervised learning, the self-training process has some inherent mismatch between the true label and pseudo-label (noisy pseudo-labels) and some of our empirical risk functions are robust, concerning noisy pseudo-labels. Under some conditions, our empirical risk functions demonstrate better performance when compared to traditional self-training methods.
Related papers
- Regularization for Adversarial Robust Learning [18.46110328123008]
We develop a novel approach to adversarial training that integrates $phi$-divergence regularization into the distributionally robust risk function.
This regularization brings a notable improvement in computation compared with the original formulation.
We validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
arXiv Detail & Related papers (2024-08-19T03:15:41Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - Adversarial Robustness on Image Classification with $k$-means [3.5385056709199536]
We evaluate the vulnerability of $k$-means clustering algorithms to adversarial attacks, emphasising the associated security risks.
We introduce and evaluate an adversarial training method that improves testing performance in adversarial scenarios.
arXiv Detail & Related papers (2023-12-15T04:51:43Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
Deep learning to inputs perturbations has raised serious questions about its use in safety-critical domains.
We propose a hybrid Langevin Monte Carlo training approach to mitigate this issue.
We show that our approach can mitigate the trade-off between state-of-the-art performance and robust robustness.
arXiv Detail & Related papers (2021-10-29T13:30:42Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
We train a separate exploration policy to maximize an approximate upper confidence bound of the critics in an off-policy actor-critic framework.
To mitigate the off-policy-ness, we adapt the recently introduced DICE framework to learn a distribution correction ratio for off-policy actor-critic training.
arXiv Detail & Related papers (2021-10-22T22:07:51Z) - Distributionally Robust Learning with Stable Adversarial Training [34.74504615726101]
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts.
We propose a novel Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set.
arXiv Detail & Related papers (2021-06-30T03:05:45Z) - Robust Imitation Learning from Noisy Demonstrations [81.67837507534001]
We show that robust imitation learning can be achieved by optimizing a classification risk with a symmetric loss.
We propose a new imitation learning method that effectively combines pseudo-labeling with co-training.
Experimental results on continuous-control benchmarks show that our method is more robust compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-20T10:41:37Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - Stable Adversarial Learning under Distributional Shifts [46.98655899839784]
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts.
We propose Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set.
arXiv Detail & Related papers (2020-06-08T08:42:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.