Regularization for Adversarial Robust Learning
- URL: http://arxiv.org/abs/2408.09672v2
- Date: Thu, 22 Aug 2024 10:07:50 GMT
- Title: Regularization for Adversarial Robust Learning
- Authors: Jie Wang, Rui Gao, Yao Xie,
- Abstract summary: We develop a novel approach to adversarial training that integrates $phi$-divergence regularization into the distributionally robust risk function.
This regularization brings a notable improvement in computation compared with the original formulation.
We validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
- Score: 18.46110328123008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the growing prevalence of artificial neural networks in real-world applications, their vulnerability to adversarial attacks remains a significant concern, which motivates us to investigate the robustness of machine learning models. While various heuristics aim to optimize the distributionally robust risk using the $\infty$-Wasserstein metric, such a notion of robustness frequently encounters computation intractability. To tackle the computational challenge, we develop a novel approach to adversarial training that integrates $\phi$-divergence regularization into the distributionally robust risk function. This regularization brings a notable improvement in computation compared with the original formulation. We develop stochastic gradient methods with biased oracles to solve this problem efficiently, achieving the near-optimal sample complexity. Moreover, we establish its regularization effects and demonstrate it is asymptotic equivalence to a regularized empirical risk minimization framework, by considering various scaling regimes of the regularization parameter and robustness level. These regimes yield gradient norm regularization, variance regularization, or a smoothed gradient norm regularization that interpolates between these extremes. We numerically validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
Related papers
- On the Geometry of Regularization in Adversarial Training: High-Dimensional Asymptotics and Generalization Bounds [11.30047438005394]
This work investigates the question of how to choose the regularization norm $lVert cdot rVert$ in the context of high-dimensional adversarial training for binary classification.
We quantitatively characterize the relationship between perturbation size and the optimal choice of $lVert cdot rVert$, confirming the intuition that, in the data scarce regime, the type of regularization becomes increasingly important for adversarial training as perturbations grow in size.
arXiv Detail & Related papers (2024-10-21T14:53:12Z) - Risk-Sensitive Soft Actor-Critic for Robust Deep Reinforcement Learning
under Distribution Shifts [11.765000124617186]
We study the robustness of deep reinforcement learning algorithms against distribution shifts within contextual multi-stage optimization problems.
We show that our algorithm is superior to risk-neutral Soft Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning.
arXiv Detail & Related papers (2024-02-15T14:55:38Z) - Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
Score Climbing [3.9410617513331863]
optimal control of dynamical systems is a crucial challenge in sequential decision-making.
Control-as-inference approaches have had considerable success, providing a viable risk-sensitive framework to address the exploration-exploitation dilemma.
This paper introduces a novel perspective by framing risk-sensitive control as Markovian reinforcement score climbing under samples drawn from a conditional particle filter.
arXiv Detail & Related papers (2023-12-21T16:34:03Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty.
We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization.
We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk.
arXiv Detail & Related papers (2023-08-30T08:46:46Z) - Risk-Sensitive Reinforcement Learning with Exponential Criteria [0.0]
We provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them.
We introduce a novel online Actor-Critic algorithm based on solving a multiplicative Bellman equation using approximation updates.
The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
arXiv Detail & Related papers (2022-12-18T04:44:38Z) - Robust Reinforcement Learning with Distributional Risk-averse
formulation [1.2891210250935146]
We approximate the Robust Reinforcement Learning constrained with a $Phi$-divergence using an approximate Risk-Averse formulation.
We show that the classical Reinforcement Learning formulation can be robustified using standard deviation penalization of the objective.
arXiv Detail & Related papers (2022-06-14T13:33:58Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
Regularizing distance between embeddings/representations of original samples and augmented counterparts is a popular technique for improving robustness of neural networks.
In this paper, we explore these various regularization choices, seeking to provide a general understanding of how we should regularize the embeddings.
We show that the generic approach we identified (squared $ell$ regularized augmentation) outperforms several recent methods, which are each specially designed for one task.
arXiv Detail & Related papers (2020-11-25T22:40:09Z) - Total Deep Variation: A Stable Regularizer for Inverse Problems [71.90933869570914]
We introduce the data-driven general-purpose total deep variation regularizer.
In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks.
We achieve state-of-the-art results for numerous imaging tasks.
arXiv Detail & Related papers (2020-06-15T21:54:15Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.