Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring
- URL: http://arxiv.org/abs/2405.00514v2
- Date: Thu, 15 Aug 2024 12:48:12 GMT
- Title: Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring
- Authors: Sizhuo Li, Dimitri Gominski, Martin Brandt, Xiaoye Tong, Philippe Ciais,
- Abstract summary: We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks.
We compare methods through a restrictive setup where no prior on the target domain is available during training.
Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression.
- Score: 1.4403877669472167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression within remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.
Related papers
- First-Order Manifold Data Augmentation for Regression Learning [4.910937238451485]
We introduce FOMA: a new data-driven domain-independent data augmentation method.
We evaluate FOMA on in-distribution generalization and out-of-distribution benchmarks, and we show that it improves the generalization of several neural architectures.
arXiv Detail & Related papers (2024-06-16T12:35:05Z) - Recurrent Aligned Network for Generalized Pedestrian Trajectory
Prediction [43.98749443981923]
Pedestrian trajectory prediction is a crucial component in computer vision and robotics.
Previous studies have tried to tackle this problem by leveraging a portion of the trajectory data from the target domain to adapt the model.
We introduce a Recurrent Aligned Network(RAN) to minimize the domain gap through domain alignment.
arXiv Detail & Related papers (2024-03-09T06:17:09Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Fishr: Invariant Gradient Variances for Out-of-distribution
Generalization [98.40583494166314]
Fishr is a learning scheme to enforce domain invariance in the space of the gradients of the loss function.
Fishr exhibits close relations with the Fisher Information and the Hessian of the loss.
In particular, Fishr improves the state of the art on the DomainBed benchmark and performs significantly better than Empirical Risk Minimization.
arXiv Detail & Related papers (2021-09-07T08:36:09Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Adversarial Weighting for Domain Adaptation in Regression [4.34858896385326]
We present a novel instance-based approach to handle regression tasks in the context of supervised domain adaptation.
We develop an adversarial network algorithm which learns both the source weighting scheme and the task in one feed-forward gradient descent.
arXiv Detail & Related papers (2020-06-15T09:44:04Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.