FMLFS: A Federated Multi-Label Feature Selection Based on Information Theory in IoT Environment
- URL: http://arxiv.org/abs/2405.00524v2
- Date: Sun, 29 Sep 2024 22:38:36 GMT
- Title: FMLFS: A Federated Multi-Label Feature Selection Based on Information Theory in IoT Environment
- Authors: Afsaneh Mahanipour, Hana Khamfroush,
- Abstract summary: Internet-of-Things (IoT) devices generate or collect a huge amount of multi-label datasets.
The presence of noisy, redundant, or irrelevant features in these datasets, along with the curse of dimensionality, poses challenges for multi-label classifiers.
This paper introduces FMLFS, the first federated multi-label feature selection method.
- Score: 1.749521391198341
- License:
- Abstract: In certain emerging applications such as health monitoring wearable and traffic monitoring systems, Internet-of-Things (IoT) devices generate or collect a huge amount of multi-label datasets. Within these datasets, each instance is linked to a set of labels. The presence of noisy, redundant, or irrelevant features in these datasets, along with the curse of dimensionality, poses challenges for multi-label classifiers. Feature selection (FS) proves to be an effective strategy in enhancing classifier performance and addressing these challenges. Yet, there is currently no existing distributed multi-label FS method documented in the literature that is suitable for distributed multi-label datasets within IoT environments. This paper introduces FMLFS, the first federated multi-label feature selection method. Here, mutual information between features and labels serves as the relevancy metric, while the correlation distance between features, derived from mutual information and joint entropy, is utilized as the redundancy measure. Following aggregation of these metrics on the edge server and employing Pareto-based bi-objective and crowding distance strategies, the sorted features are subsequently sent back to the IoT devices. The proposed method is evaluated through two scenarios: 1) transmitting reduced-size datasets to the edge server for centralized classifier usage, and 2) employing federated learning with reduced-size datasets. Evaluation across three metrics - performance, time complexity, and communication cost - demonstrates that FMLFS outperforms five other comparable methods in the literature and provides a good trade-off on three real-world datasets.
Related papers
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Det is a framework for unified and universal multi-dataset training on 3D detection.
We introduce multi-stage prompting modules for multi-dataset 3D detection.
Results on zero-shot cross-dataset transfer validate the generalization capability of our proposed method.
arXiv Detail & Related papers (2024-09-30T17:57:50Z) - Causal Multi-Label Feature Selection in Federated Setting [11.713722451298171]
We propose a Federated Causal Multi-label Feature Selection (FedCMFS) algorithm with three novel subroutines.
FedCMFS first uses the FedCFL subroutine that considers the correlations among label-label, label-feature, and feature-feature to learn the relevant features.
Second, FedCMFS employs the FedCFR subroutine to selectively recover the missed true relevant features.
arXiv Detail & Related papers (2024-03-11T04:11:48Z) - Empowering HWNs with Efficient Data Labeling: A Clustered Federated
Semi-Supervised Learning Approach [2.046985601687158]
Clustered Federated Multitask Learning (CFL) has gained considerable attention as an effective strategy for overcoming statistical challenges.
We introduce a novel framework, Clustered Federated Semi-Supervised Learning (CFSL), designed for more realistic HWN scenarios.
Our results demonstrate that CFSL significantly improves upon key metrics such as testing accuracy, labeling accuracy, and labeling latency under varying proportions of labeled and unlabeled data.
arXiv Detail & Related papers (2024-01-19T11:47:49Z) - Multi-label affordance mapping from egocentric vision [3.683202928838613]
We present a new approach to affordance perception which enables accurate multi-label segmentation.
Our approach can be used to automatically extract grounded affordances from first person videos.
We show how our metric representation can be exploited for build a map of interaction hotspots.
arXiv Detail & Related papers (2023-09-05T10:56:23Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - Multi-view Multi-label Anomaly Network Traffic Classification based on
MLP-Mixer Neural Network [55.21501819988941]
Existing network traffic classification based on convolutional neural networks (CNNs) often emphasizes local patterns of traffic data while ignoring global information associations.
We propose an end-to-end network traffic classification method.
arXiv Detail & Related papers (2022-10-30T01:52:05Z) - Learning Semantic Segmentation from Multiple Datasets with Label Shifts [101.24334184653355]
This paper proposes UniSeg, an effective approach to automatically train models across multiple datasets with differing label spaces.
Specifically, we propose two losses that account for conflicting and co-occurring labels to achieve better generalization performance in unseen domains.
arXiv Detail & Related papers (2022-02-28T18:55:19Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
We propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation.
Our method generates a new tracking-by-points paradigm where discriminative instance embeddings are learned from randomly selected points rather than images.
The resulting online MOTS framework, named PointTrack, surpasses all the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-07-03T08:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.