論文の概要: Are Models Biased on Text without Gender-related Language?
- arxiv url: http://arxiv.org/abs/2405.00588v1
- Date: Wed, 1 May 2024 15:51:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:17:48.047303
- Title: Are Models Biased on Text without Gender-related Language?
- Title(参考訳): モデルがジェンダー関連言語を使わずにテキストにバイアスをかけるか?
- Authors: Catarina G Belém, Preethi Seshadri, Yasaman Razeghi, Sameer Singh,
- Abstract要約: ステレオタイプフリーシナリオにおけるジェンダーバイアスを調査するための新しいフレームワークUnStereoEval(USE)を紹介する。
USEは事前学習データ統計に基づいて文レベルスコアを定義し、その文が単語と性別の関連が最小限であるかどうかを判定する。
28の試験モデルにおいて、偏見が低いことは、偏見が単にジェンダー関連の単語の存在に由来するものではないことを示唆している。
- 参考スコア(独自算出の注目度): 14.931375031931386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
- Abstract(参考訳): ジェンダーバイアスの研究は、大きな言語モデルにおいて望ましくない行動を明らかにし、職業や感情に関連する深刻なジェンダーステレオタイプを明らかにする上で重要な役割を担っている。
先行研究における重要な観察は、トレーニングデータに存在する男女相関の結果、モデルがステレオタイプを強化することである。
本稿では,トレーニングデータの影響が不明瞭な場合のバイアスに着目し,その代わりに問題に対処する。
そこで本研究では,ステレオタイプフリーシナリオにおけるジェンダーバイアスを調査するための新しいフレームワークUnStereoEval(USE)を紹介する。
USEは事前学習データ統計に基づいて文レベルスコアを定義し、その文が単語と性別の関連が最小限であるかどうかを判定する。
ステレオタイプのないシナリオにおいて、人気のある言語モデルの公平性を体系的にベンチマークするために、USEを使用して、性別関連の言語を使わずにベンチマークを自動的に生成する。
USEの文レベルスコアを活用することで、非ステレオタイプ評価に先行性バイアスベンチマーク(WinobiasとWinogender)を再利用する。
意外なことに、28の試験モデル全体では、フェアネスが低い。
具体的には、モデルでは、ステレオタイプのない文のわずか9%-41%で公正な振る舞いを示しており、偏見は単にジェンダー関連の単語の存在に由来するものではないことを示唆している。
これらの結果は、基盤となるモデルバイアスがどこから来るのかという重要な疑問を提起し、より体系的で包括的なバイアス評価の必要性を強調します。
完全なデータセットとコードはhttps://ucinlp.github.io/unstereo-eval.orgで公開しています。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - DiFair: A Benchmark for Disentangled Assessment of Gender Knowledge and
Bias [13.928591341824248]
事前訓練された言語モデルでよく見られる性別バイアスを軽減するために、デバイアス技術が提案されている。
これらはしばしば、予測においてモデルが性中立である範囲をチェックするデータセットで評価される。
この評価プロトコルは、バイアス緩和が有意義なジェンダー知識に悪影響を及ぼす可能性を見落としている。
論文 参考訳(メタデータ) (2023-10-22T15:27:16Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation [10.542861450223128]
3つのドメインのコーパスにおいて,ステレオタイプおよび非ステレオタイプなジェンダーロール代入を示す文法パターンが発見された。
我々は、コーパスの品質を手動で検証し、様々なコア参照解像度と機械翻訳モデルにおける性別バイアスを評価する。
論文 参考訳(メタデータ) (2021-09-08T18:14:11Z) - Stereotype and Skew: Quantifying Gender Bias in Pre-trained and
Fine-tuned Language Models [5.378664454650768]
本稿では,文脈言語モデルにおける性別バイアスの定量化と分析を行う,スキューとステレオタイプという2つの直感的な指標を提案する。
性別のステレオタイプは、アウト・オブ・ボックスモデルにおける性別の歪とほぼ負の相関関係にあり、これらの2種類のバイアスの間にトレードオフが存在することを示唆している。
論文 参考訳(メタデータ) (2021-01-24T10:57:59Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
ほとんどのキャプションモデルは性別バイアスを学習し、特に女性にとって高い性別予測エラーにつながる。
本稿では, 視覚的注意を自己指導し, 正しい性的な視覚的証拠を捉えるためのガイド付き注意画像キャプチャーモデル(GAIC)を提案する。
論文 参考訳(メタデータ) (2020-06-15T12:16:19Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。