Are Models Biased on Text without Gender-related Language?
- URL: http://arxiv.org/abs/2405.00588v1
- Date: Wed, 1 May 2024 15:51:15 GMT
- Title: Are Models Biased on Text without Gender-related Language?
- Authors: Catarina G Belém, Preethi Seshadri, Yasaman Razeghi, Sameer Singh,
- Abstract summary: We introduce UnStereoEval (USE), a novel framework for investigating gender bias in stereotype-free scenarios.
USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations.
We find low fairness across all 28 tested models, suggesting that bias does not solely stem from the presence of gender-related words.
- Score: 14.931375031931386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - DiFair: A Benchmark for Disentangled Assessment of Gender Knowledge and
Bias [13.928591341824248]
Debiasing techniques have been proposed to mitigate the gender bias that is prevalent in pretrained language models.
These are often evaluated on datasets that check the extent to which the model is gender-neutral in its predictions.
This evaluation protocol overlooks the possible adverse impact of bias mitigation on useful gender knowledge.
arXiv Detail & Related papers (2023-10-22T15:27:16Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
Recent studies show that traditional fairytales are rife with harmful gender biases.
This work aims to assess learned biases of language models by evaluating their robustness against gender perturbations.
arXiv Detail & Related papers (2023-10-16T22:25:09Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
We compare the impact of debiasing on performance across multiple downstream tasks using a wide-range of benchmark datasets.
Experiments show that the effects of debiasing are consistently emphunderestimated across all tasks.
arXiv Detail & Related papers (2023-09-16T20:25:34Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation [10.542861450223128]
We find grammatical patterns indicating stereotypical and non-stereotypical gender-role assignments in corpora from three domains.
We manually verify the quality of our corpus and use it to evaluate gender bias in various coreference resolution and machine translation models.
arXiv Detail & Related papers (2021-09-08T18:14:11Z) - Stereotype and Skew: Quantifying Gender Bias in Pre-trained and
Fine-tuned Language Models [5.378664454650768]
This paper proposes two intuitive metrics, skew and stereotype, that quantify and analyse the gender bias present in contextual language models.
We find evidence that gender stereotype correlates approximately negatively with gender skew in out-of-the-box models, suggesting that there is a trade-off between these two forms of bias.
arXiv Detail & Related papers (2021-01-24T10:57:59Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
Most captioning models learn gender bias, leading to high gender prediction errors, especially for women.
We propose a new Guided Attention Image Captioning model (GAIC) which provides self-guidance on visual attention to encourage the model to capture correct gender visual evidence.
arXiv Detail & Related papers (2020-06-15T12:16:19Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.